Большой взрыв образование планетных систем презентация. Презентация на тему теория вечной вселенной и большого взрыва


История Вселенной согласно теории Большого взрыва В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества.


В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. Любая материальная частица имеет некоторую массу, и поэтому для ее образования требуется наличие определенной «пороговой, энергии»; пока плотность энергии фотонов оставалась доста- точно высокой, могли возникать любые частицы. Мы знаем также, что, когда частицы рождаются из гамма-излучения (фотонов высокой энергии), они рождаются парами, состоящими из частицы и античастицы, например электрона и позитрона. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.


Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами и т. д.) и античастицами (антипротонами, антинейтронами, позитронами и т. д.), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. В настоящее время разрабатывается ряд теорий, в которых такой дисбаланс находит вполне естественное объяснение.


После того как вещество стало прозрачным для электро­ магнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом. Тем не менее, многие вопросы, касающиеся эпохи, последовавшей за эпохой отделения излучения от вещества, остаются пока без ответа; в частности, остается нерешенным вопрос формирования галактик и звезд. Образовались ли галактики раньше первого поколения звезд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звездах, галактиках, скоплениях и сверхскоплениях, - когда Вселенная как целое разлеталась в разные стороны?


Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение. В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (барионы - «тяжелые» элементарные частицы, к которым, в частности, относятся протоны и нейтроны) - 108:1, - М.Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет; многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.


Оставляя в стороне спорный вопрос, касающийся образования галактик, посмотрим, что говорят современная теория и данные наблюдений относительно будущего развития Вселенной и ее вероятного конца. Вне всякого сомнения, именно гравитационное взаимодействие определит дальнейший ход событий. Достаточно ли во Вселенной вещества для того, чтобы силы тяготения в конечном счете остановили процесс расширения и заставили галактики вновь начать падать друг на друга, в результате чего Вселенная закончила бы свое существование в неком «Большом сжатии». Или же наоборот. Вселенная будет расширяться бесконечно?


Процесс расширения Вселенной можно рассматривать, используя понятие скорости убегания. Согласно закону всемирного тяготения Ньютона, эффективная гравитационная сила, действующая на частицу, находящуюся внутри пустой сферической оболочки, равна нулю. притяжение, вызываемое разными частями оболочки, взаимно компенсируется. То же имеет место и в общей теории относительности. Следовательно, если выбрать для исследования типичную сферическую область Вселенной, то все остальное можно считать полой толстостенной оболочкой, расположенной вне интересующей нас области, поскольку в силу космологического принципа все направления во Вселенной равноправны, а вещество в ней распределено равномерно. Тогда можно допустить, что на галактику, расположенную у края выбранной нами области, действуют силы притяжения только со стороны вещества, находящегося внутри выбранной сферы.


Если это вещество распределено равномерно, то галактика будет притягиваться к центру сферы так, как если бы там была сосредоточена вся заключенная внутри сферы масса. В своем движении относительно центра сферы эта «пробная» галактика должна вести себя, как снаряд, выпущенный «наружу» из этой точки. Если скорость галактики достаточно велика, т. е. если она превышает скорость убегания, характерную для этой сферической области, то галактика будет продолжать свое движение вечно (открытая вселенная), но если скорость галактики недостаточна, то она в конце концов уменьшится до нуля, после чего галактика начнет двигаться к центру сферы (замкнутая вселенная).


Зная скорость разбегания галактик - она определяется значением постоянной Хаббла, - можно оценить необходимую величину массы, которая должна содержаться в данном объеме пространства, чтобы расширение когда-то прекратилось; иначе говоря, требуется рассчитать среднее значение плотности вещества, которая обеспечила бы существование замкнутой вселенной. Если окажется, что средняя плотность вещества превышает некоторое значение, называемое критической плотностью, то Вселенная через какое-то время должна перестать расширяться - тогда поле битвы останется за силами тяготения и коллапс вещества Вселенной будет неизбежным.


Принимая Но=55 км/с*Мпс, находим, что значение критической плотности примерно равно кг/м3, или в среднем примерно 3 атома водорода в 1 м3 - это очень немного! При такой плотности Вселенная должна быть очень большой, а вещество в ней - очень разреженным. Определение средней плотности вещества во Вселенной - одна из важнейших задач современной астрономии.




Если наша Вселенная будет неограниченно расширяться - а об этом свидетельствуют почти все данные наблюдений, - то что ее ожидает в будущем? По мере расширения пространства материя становится все более разреженной, галактики и скопления все более удаляются друг от друга, а температура фонового излучения неуклонно приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарных частиц и холодного излучения будут бессмысленно разлетаться в непрерывно разрежающейся пустоте.


Дж.Б.Берроу из Оксфордского университета и Ф.Типлер из Калифорнийского университета нарисовали такую картину отдаленного будущего неограниченно расширяющейся вселенной. Даже внутри старой нейтронной звезды сохраняется еще достаточно энергии, чтобы время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания; предполагается, что в результате этого через достаточно продолжительное время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц.


По мнению Берроу и Типлера, если запас энергии во Вселенной достаточен только для того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно- позитронных парах перевесит и гравитационное притяжение, и общее расширение Вселенной как целого; поэтому за конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадией существования материи окажутся не разлетающиеся холодные темные тела или черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.


Второе начало термодинамики предсказывает, что конец Эволюции Вселенной наступит, когда выравняется температура ее вещества - так как тепло передается от более теплых тел к более холодным, различие их температур со временем сглаживается и совершение работы становится невозможным. Эта мысль о «тепловой смерти» Вселенной была высказана еще в 1854г. Германом Гельмгольцем (). Небезынтересно отметить, что наше современное представление о неограниченно расширяющейся Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и термодинамикой, по существу, привело, только более кружным путем, к выводам, сделанным Гельмгольцем.


Мы не знаем с определенностью, каков должен быть исход противоборства расширения Вселенной и гравитационного притяжения ее вещества. Если победит тяготение, Вселенная когда-нибудь сколлапсирует в процессе Большого сжатия, которое может оказаться либо концом ее существования, либо прелюдией к новому циклу расширения. Если же силы тяготения проиграют сражение, то расширение будет продолжаться неограниченно долго, но тем не менее гравитация будет играть существенную роль в определении окончательного состояния вещества Вселенной: станет ли оно безбрежным морем однородного излучения или же будет рассеиваться множеством темных холодных масс. В неясном далеком будущем прошедшая эпоха звездной активности может показаться лишь кратчайшим мгновением в бесконечной жизни Вселенной.


Так неужели, же Вселенная обречена на вечное расширение? Пока все данные говорят именно об этом, хотя нельзя без боли думать о превращении нашего удивительного и сложного мира в бесформенную темную пустоту. По- видимому, многим была бы больше по душе пульсирующая модель, дающая надежду на возрождение пусть не живых существ, но по крайней мере таких привычных нам вещей, как вещество и излучение. Однако, что бы мы ни предпринимали, это не изменит ни плотности космического вещества, ни судьбы космоса - нам остается принимать его таким, каков он есть: Вселенную не выбирают.

Теория Большого Взрыва утверждает, что вся физическая вселенная – материя, энергия и даже 4 измерения пространства и времени возникли из состояния бесконечных значений плотности, температуры и давления. Вселенная возникла из объема меньшего, чем точка и продолжает расширяться. Теория Большого Взрыва теперь общепринята, так как она объясняет оба наиболее значительных факта космологии: расширяющуюся Вселенную и существование космического фонового излучения.

В течение первого миллиона лет вещество и энергия во Вселенной сформировали непрозрачную плазму, иногда называемую первичным огненным шаром.

К концу этого периода расширение Вселенной заставило температуру опуститься ниже 3000 K, так что протоны и электроны смогли объединяться, образуя атомы водорода. На этой стадии Вселенная стала прозрачной для излучения. Плотность вещества теперь стала выше плотности излучения, хотя раньше ситуация была обратной, что и определяло скорость расширения Вселенной.

Фоновое микроволновое излучение - все, что осталось от сильно охлажденного излучения ранней Вселенной.

Это изображение показывает предположение о том, как выглядела очень молодая вселенная (меньше чем 1 миллиард лет), когда начиналось формирование звезд, преобразовывая исходный водород в бесчисленные звезды.

начали формироваться из первичных облаков водорода и гелия только через один или два миллиарда лет. Термин "Большой Взрыв" может применяться к любой модели расширяющейся Вселенной, которая в прошлом была горячей и плотной

Большое Магелланово Облако - галактика, которая сопровождает нашу собственную. Она видима невооруженным взглядом как туманная, удлиненная область неба. Оно расположено на расстоянии в 160,000 световых лет и охватывает область в 20,000 световых лет. Его видимая часть - десятая часть Млечного пути

Молодая планетарная туманность удаленная от нас приблизительно на 8000 световых лет. Изображение принималось в трех различных длинах волн, чтобы отразить газовый состав туманности. Азот показан красным цветом, водород - зеленым и вдвойне ионизированный кислород - синим. Точный процесс формирования пока неясен

    Слайд 1

    В соответствии с решениями Фридмана уравнений Эйнштейна 13–17 миллиардов лет назад, в начальный момент времени, радиус Вселенной был равен нулю. В нулевом объеме была сосредоточена вся энергия Вселенной, вся ее масса. Плотность энергии бесконечна, бесконечна и плотность вещества. Подобное состояние называется сингулярным. В1946 году Георгий Гамов и его коллеги разработали физическую теорию начального этапа расширения Вселенной, объясняющую наличие в ней химических элементов синтезом при очень высоких температуре и давлении. Поэтому начало расширения по теории Гамова назвали «Большим Взрывом». Соавторами Гамова были Р. Альфер и Г. Бете, поэтому иногда эту теорию называют «α, β, γ-теория».

    Слайд 2

    Большинство учёных считает что Вселенная началась с события, прошедшего 13-17миллиардов лет назад «Большого взрыва». ДИАГРАММА «От большого взрыва до наших дней». В верхней части изображены горячие плотные сгустки вещества, которые превратились в галактики. В нижней части изображены радиация и элементарные частицы, из которых составляются атомы и, наконец растения и животные на нашей Земле.

    Слайд 3

    Самая ранняя Вселенная представляла собой огненный шар излучения. Вселенная состояла из смеси экзотических частиц, которые быстро охлаждались по мере расширения крохотного мира. Когда возраст Вселенной достиг одной миллионной доли секунды, большая часть энергии превратилась в протоны. В следующую тысячную долю секунды сформировались электроны, которые слились с протонами, образовав электроны. За первую четверть часа протоны успели прореагировать с быстрораспадающимися нейтронами, и появились ядра атома гелия. Спустя миллион лет температура упала до 4000 К, что позволило удержать электроны на орбитах. Образовались атомы. Вселенная стала прозрачной и свет получил возможность путешествовать беспрепятственно.

    Слайд 4

    Молодая Вселенная

  • Слайд 5

    Вселенная расширяется из состояния с бесконечной плотностью. В сингулярном состоянии обычные законы физики неприменимы: теория, объединяющая теорию относительности и квантовую физику, до сих пор не построена. По-видимому, все фундаментальные взаимодействия при столь высоких энергиях неотличимы друг от друга. А с какого радиуса Вселенной имеет смысл говорить о применимости законов физики? Ответ – с планковской длины: начиная с момента времени tP = RP/c = 5∙10–44 c, где G – гравитационная постоянная, h – постоянная Планка, с – скорость света. Скорее всего, именно через tP гравитационное взаимодействие отделилось от остальных. В 1992 году была открыта анизотропия реликтового излучения – незначительное отклонение температуры (на 30 мкК) от среднего значения 2,725 К в различных направлениях на небе. Открытие анизотропии реликтового излучения также подтверждает теорию Горячей Вселенной и Большого Взрыва.

    Слайд 6

    Теория «Большого Взрыва» Сингулярность – особое состояние материи, характеризующееся её бесконечно большой плотностью (5 · 1096 кг/м3), сосредоточенной в точечном объёме. 1946 год Георгий Гамов и его коллеги разработали теорию «Большого Взрыва» (1904-1968),

    Слайд 7

    Вывод расчётов Фридмана: Вселенная не может быть стационарной. Она либо Расширяется Сжимается либо

    Слайд 8

    Слайд 9

    Большой взрыв Около 15 -17 миллиардов лет назад началось взрывообразное расширение Вселенной. Эра расширения Короткий взрывной период расширения. Вселенная вырастает от атома до яблока. Взрывное расширение приостанавливается, когда сила начинает преобразовываться в материю и энергию. Эра радиации Энергия пребывает в виде электромагнитных полей -видимого света, рентгеновского излучения и радиоволн. Кварки комбинируются в протоны и нейтроны, которые позднее склеятся в ядра атомов. Легкие ядра – гелий, дейтерий и литий- образуются на третьей минуте жизни Вселенной. Время в секундах 10¯⁴⁰ 10¯³⁰ 10¯²⁰ 10¯¹⁰ 10° Секунда после взрыва год 10¹ 10¹°лет Мы здесь 10²° Эра звёзд Электроны комбинируются с существующими ядрами, в основном водорода и гелия. Из этого сырья в течение последующего миллиарда лет конденсируется первое поколение звёзд. Зарождаются галактики Солнечная система и Солнце сформировались 4,6 миллиона лет назад. Люди появились всего за 100 000 лет до настоящего момента.

    Слайд 10

    Новый Год, 1 января, 0ч00м00с - Большой Взрыв и возникновение Метагалактики 1 января, полдень образовались первые атомы Март Образовались первые галактики Апрель Образовалась наша Галактика Июнь Процесс образования галактик в основном завершился Сентябрь Возникновение Солнца и Солнечной системы Октябрь Возникновение жизни(микроорганизмы) Ноябрь Микробиоты, возникновение фотосинтеза Декабрь, 1- 5 Образование кислородной атмосферы 15 Первые многоклеточные 20 Возникновение беспозвоночных 26 Первые динозавры 27 Первые млекопитающие 28 Первые птицы 29 Вымирание динозавров 30 Первые приматы 31 декабря, 14ч Рамапитек 22ч30м Первые люди Новый год 1 января, 00ч00м03с - ХХI век. Один год и ВСЕЛЕННАЯ

Посмотреть все слайды

"Мы надеемся уложить все мироздание в простую и короткую формулу, которую можно будет печатать на майках". Л.Лердман




Все попытки создать физическую модель происхождения Вселенной основаны на трех постулатах: Все явления природы могут быть исчерпывающе описаны физическими законами, выраженными в математической форме; Эти физические законы универсальны и не зависят от времени и места; Все основные законы природы просты.




Фридман Александр Александрович Фридман в и Жорж Леметр в 1927 г. сумели доказать, что уравнения Эйнштейна допускают и такое решение: первоначально вся Вселенная была сосредоточенна в одной точке, (названной условно "папой-атомом") а затем начинает расширяться, и так появляются галактики и звезды в них.


Хаббл Эдвин В 1929 году сумел подтвердить на практике теории Фридмана и Леметра. Однако это удалось сделать в 1929 году выдающемуся астроному Эдвину Хабблу. Своими тщательными измерениями он доказал, что давно известные туманности, ранее считавшиеся всего лишь облаками газа, на самом деле являются галактиками. И что самое интересное, эти галактики движутся, удаляясь от нас со скоростями, тем большими, чем дальше они отстоят.


Неправильная галактика Сигара в созвездии Большая Медведица (M82) (наверху) и спиральная галактика в созвездии Треугольник (M33) (внизу), которые ошибочно принимали за туманности в начале ХХ века до того, как Хаббла доказал, что на самомо деле это галктики. (фото сделано позднее).


Гамов Георгий Антонович Гамов доказал, папа-атом не просто вдруг начал расширяться во всю Вселенную (так называемая "холодная модель"), он должен был взорваться. Модель эту он называет "Big Bang" ом" (очень простонародное по тому времени отношении к иностранному языку), Большим Взрывом, и излагает ее сначала в заметке 1946 года, а потом статье 1948 года "Происхождение химических элементов", написанной вместе с учеником Ральфом Альфером.


Главный вопрос в теориях Гамова был следующий: если такой взрыв имел место быть, то уже на довольно ранних стадиях должно было возникнуть пронизывающее весь мир электромагнитное излучение, распределение которого должно было соответствовать температуре в момент излучения (многие миллиарды градусов). Но по мере расширения Вселенной частоты этого первичного (его назвали "реликтовым") излучения должны были вследствие эффекта Доплера убывать, и к настоящему времени, по оценкам Гамова, соответствовать температуре около трех-четырех градусов по Кельвину, т.е. быть сосредоточены в районе длин волн в несколько сантиметров. В 1965 году А.Пензиас и Р.Вильсон, конструировавшие антенны для радиоэлектроники, обнаруживают равномерно идущее во всех направлениях электромагнитное излучение, соответствующее температуре в 3 Кельвина! Как выяснилось, это вовсе не сбой аппаратуры, а именно то излучение, о котором говорил Гамов! Но Нобелевскую премию Дали Пензиасу и Вильсону, а не Гамову.


Данные от зонда NASA - WMAP, который завис в точке Лагранжа (точке гравитационного равновесия Солнца и Земли) на расстоянии 1,5 млн. км от нас. Полученная "картинка" фактически представляет собой снимок послесвечения Большого взрыва, образованный распределением температуры космического микроволнового фона.


Хоукинг Стивен р.1942 На сегодняшний день теория в последствии была много раз интерпретирована, переложена и дополнена многими учеными. Основной вклад в решении проблем Теории Большого Взрыва внес Стивен Хоукинг, причем вклад не теоретический, а весьма практический – более двух тысяч страниц вычислений и уравнений, посвященных описанию появления частиц и галактик.




Теория большого взрыва Время – млрд. лет назад. Изначальная плотность кг/м 3. Объем «папы-атома» был бесконечно мал.


Понижение температуры T в зависимости от времени t. Для того чтобы фотон превратился (материализовался) в частицу и античастицу с массой m o и энергией покоя m o c 2, ему необходимо обладать энергией 2 m o c 2. В предыдущем соотношении можно заменить энергию фотонов hn кинетической энергией частиц kT Или…




10 32 10 32 18 Развитие Вселенной: догалактический период Время после Большого Взрыва Характерные температуры (K) Характерные расстояния (см) Этап/ Событие 10 32 10 32 10 32 10 32 title="Развитие Вселенной: догалактический период Время после Большого Взрыва Характерные температуры (K) Характерные расстояния (см) Этап/ Событие 10 32


С Адронная эра. Рождение и аннигиляция адронов и лептонов с Лептонная эра. Рождение и аннигиляция лептонов с2· Отделение нейтрино. Вселенная становится прозрачной для нейтрино (антинейтрино) с~ Дозвездный синтез гелия. 10 с лет Радиационная эра. Доминирование излучения над веществом лет Начало эры Вещества. Вещество начинает доминировать над излучением лет3· Разделение вещества и излучения. Вселенная становится прозрачной для излучения. Время после Большого Взрыва Характерные температуры (K) Характерные расстояния (см) Этап/ Событие






Современная космология имеет три пути решения проблем Теории Большого Взрыва: Полностью отказаться от Теории Большого Взрыва. Использовать для развития Теории огромное количество человеческих, машинных и денежных ресурсов. Найти принципиально новую (и достоверную) альтернативу, представляющую собой измененный вариант Теории Большого Взрыва.




Можно указать три разные модели, для которых выполняются оба фундаментальных предположения Фридмана. В модели первого типа (открытой самим Фридманом) Вселенная расширяется достаточно медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого галактики начинают приближаться друг к другу, и Вселенная начинает сжиматься. На рис. 1 показано, как меняется со временем расстояние между двумя соседними галактиками. Оно возрастает от нуля до некоего максимума, а потом опять падает до нуля. В модели второго типа расширение Вселенной происходит так быстро, что гравитационное притяжение хоть и замедляет расширение, не может его остановить. На рис. 2 показано, как изменяется в этой модели расстояние между галактиками. Кривая выходит из нуля, а в конце концов галактики удаляются друг от друга с постоянной скоростью. Есть, наконец, и модель третьего типа, в которой скорость расширения Вселенной только-только достаточна для того, чтобы избежать сжатия до нуля (коллапса). В этом случае расстояние между галактиками тоже сначала равно нулю (рис. 3), а потом все время возрастает. Правда, галактики «разбегаются» все с меньшей и меньшей скоростью, но она никогда не падает до нуля. Можно указать три разные модели, для которых выполняются оба фундаментальных предположения Фридмана. В модели первого типа (открытой самим Фридманом) Вселенная расширяется достаточно медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого галактики начинают приближаться друг к другу, и Вселенная начинает сжиматься. На рис. 1 показано, как меняется со временем расстояние между двумя соседними галактиками. Оно возрастает от нуля до некоего максимума, а потом опять падает до нуля. В модели второго типа расширение Вселенной происходит так быстро, что гравитационное притяжение хоть и замедляет расширение, не может его остановить. На рис. 2 показано, как изменяется в этой модели расстояние между галактиками. Кривая выходит из нуля, а в конце концов галактики удаляются друг от друга с постоянной скоростью. Есть, наконец, и модель третьего типа, в которой скорость расширения Вселенной только-только достаточна для того, чтобы избежать сжатия до нуля (коллапса). В этом случае расстояние между галактиками тоже сначала равно нулю (рис. 3), а потом все время возрастает. Правда, галактики «разбегаются» все с меньшей и меньшей скоростью, но она никогда не падает до нуля.








Факты, твердо и навсегда установленные и доказанные Теорией Большого Взрыва: В момент "рождения" вся материя вселенной была сконцентрирована в одной точке, которая имела бесконечной большую массу и бесконечно малый объем; В результате расширения (или взрыва) этой точки начали образовываться сначала элементарные частицы, а потом – первые материальные макротела.


Факты, доказывающие Теорию Большого Взрыва: Удаление друг от друга галактик, со скоростями все большими, чем дальше они друг от друга отстоят, которое открыл Хаббл; Реликтовое излучение, открытое Пензиасом и Вильсоном; Математические расчеты формирования веществ, выведенные С. Хоукингом и другими математиками; Общая теория относительности Эйнштейна.



В продолжение темы:
Балкон и лоджия

С древних времен наши предки пытались угадать в сновидениях перст судьбы и придавали снам колоссальное значение, наделяя каждый увиденный предмет или событие символичным...

Новые статьи
/
Популярные