Правильная биомеханика тела. Шпаргалка: Принципы биомеханики спорта

Введение в биомеханику и биомеханические особенности строения тела человека

Биомеханика - это наука, которая изучает механические явления в живых системах.

Живые системы и механические явления в них весьма многообразны. К живым системам относятся: различные ткани тела человека (костная, мышечная, соединительная и др.), органы и системы (сердечно-сосудистая, дыхательная, скелетно-мышечная и др.), человек или группа людей и т. п. Механические явления также многообразны. К ним относятся: механические свойства тканей тела человека, механика движения крови по сосудам, механика родового акта и другие. Но чаще всего основным предметом исследования биомеханики является механическое движение животных, в том числе и человека.

Биомеханика как научная область знаний развивается в разных направлениях. Ее знания и методы широко используются в робототехнике, при изучении двигательных действий в условиях производства, в медицине, в космонавтике и т. п. Физическая культура и спорт также нуждаются в знаниях биомеханики.

Основными задачами спортивной биомеханики являются:

1. Изучение техники тренировочных и соревновательных спортивных упражнений.

2. Изучение строения и свойств двигательного аппарата человека.

3. Изучение двигательных способностей человека (силы, быстроты, выносливости и др.).

4. Биомеханическое обоснование конструкции тренажеров и требований по их использованию в тренировочном процессе.

5. Биомеханические аспекты и профилактика спортивного травматизма.

6. Изучение индивидуальных и групповых особенностей движений и двигательных возможностей человека.

Соединение звеньев тела человека и степени свободы

Пассивная часть двигательного аппарата человека включает в себя кости, суставы и связки, образующие скелет человека. В биомеханике его принято рассматривать как многозвенную систему, состоящую из подвижно соединенных твердых звеньев. Известно, что скелет человека состоит из более 200 костей. Для удобства его описания используют такие понятия, как кинематическая пара, кинематическая цепь и степени свободы.

Кинематическая пара - это два звена, соединенные между собой подвижно. Примером кинематической пары является плечо и предплечье, соединенные локтевым суставом.

Кинематическая цепь - это последовательное или разветвленное соединение кинематических пар. Различают замкнутые и незамкнутые кинематические цепи. Примером замкнутой цепи является последовательное соединение двух ребер, грудины и позвонка в грудной клетке. К незамкнутой кинематической цепи можно отнести безопорную ногу в фазе переноса при ходьбе.

Степени свободы - это количество независимых угловых и линейных перемещений тела. Применительно к телу человека понятие степени свободы характеризует степень подвижности кинематических пар, цепей и всего тела человека. Поскольку в суставах возможны в основном вращательные движения, то степени свободы в них определяются независимыми угловыми перемещениями, количество которых зависит от формы и строения сустава. Так, например, в локтевом суставе имеется две степени свободы (сгибание-разгибание и пронация-супинация), а в тазобедренном суставе - три степени свободы (сгибание-разгибание, отведение-приведение и пронация-супинация). Чтобы определить число степеней свободы в кинематической цепи, нужно сложить степени свободы всех суставов этой цепи. В теле человека насчитывается 244 степени свободы, что свидетельствует о его колоссальной подвижности, а значит, и необходимости управления движениями такой сложной системы.

Биомеханика мышц

Скелетные мышцы являются основными движителями нашего тела. Их количество превышает 600. С биомеханической точки зрения основными показателями их деятельности в организме человека являются сила тяги и скорость изменения длины. Следует подчеркнуть, что мышца может только тянуть, толкать она не может. Именно поэтому для управления движениями в суставах относительно той или иной степени свободы необходимы как минимум две мышцы-антагонисты. Реально их значительно больше, что создает значительные трудности в понимании того, как мозг распределяет степень участия мышц в суставных движениях. Это одна из нерешенных пока проблем организации движений человека, которая в биомеханике получила название «проблема избыточности в управлении мышечной активностью».

Эксперименты на изолированных мышцах животных и человека показали, что сила тяги мышцы складывается из двух составляющих. Одна из них, назовем ее активной составляющей, обусловлена сократительными возможностями мышечной ткани. Другая составляющая силы возникает при растягивании мышцы и обусловлена наличием в ней соединительной ткани, которая ведет себя подобно пружине и способна накапливать энергию упругой деформации при растягивании мышцы. Назовем ее пассивной составляющей силы тяги мышцы. Следует подчеркнуть, что активная сила тяги сопровождается затратами химической энергии, запасенной в мышцах, и, как следствие, приводит к утомлению. Пассивная составляющая силы тяги имеет сугубо механическую природу и не требует затрат химической энергии.

Рассмотрим основные зависимости, раскрывающие сущность механики мышечного сокращения.

На рис. 1 показаны зависимости силы тяги изолированной мышцы от ее длины. Видно, что с увеличением длины мышцы суммарная сила тяги (а) увеличивается, но при этом активная (с) и пассивная (б) составляющие силы изменяются по-разному. Сила упругой деформации (б) нелинейно возрастает с увеличением длины мышцы. Активная сила (с) сначала увеличивается, а затем уменьшается, т. е. максимум силы тяги наблюдается при некоторой оптимальной длине мышцы, которая получила название длина покоя. Отметим, что в зависимости от количества соединительной ткани в мышце характер кривых «сила-длина» и доля вклада активной и пассивной силы в общую силу тяги мышцы изменяются (рис. 1-I, II, и III).

Икроножная мышца Портняжная мышца Полусухожильная мышца

Рис. 1. Зависимость силы тяги мышцы (F) от ее длины (I). Сплошная линия (а) - общая сила тяги; сплошная линия (b) - сила тяги мышцы при ее пассивном состоянии; пунктирная линия (с) - сила тяги сократительных элементов мышцы

Другой классической зависимостью является зависимость силы тяги мышцы от скорости изменения ее длины. Прежде чем ее рассмотреть, напомним основные режимы мышечного сокращения.

Изометрический - режим, при котором сокращение происходит при постоянной длине мышцы.

Преодолевающий - режим сокращения, при котором длина мышцы уменьшается. Этот режим также называют концентрическим или миометрическим.

Уступающий - режим сокращения, при котором длина мышцы увеличивается. Другие названия - эксцентрический или плиометрический .

На рис. 2 приведен график зависимости силы тяги мышцы от скорости изменения ее длины при разных режимах мышечного сокращения. Видно, что наибольшую силу тяги мышца проявляет при уступающем режиме сокращения.

Рис. 2. Зависимость силы тяги мышцы (F) от скорости изменения ее длины

Причем с ростом скорости растягивания мышцы сила увеличивается, но до определенного предела. Следующим режимом сокращения с точки зрения силовых возможностей мышцы является изометрический режим. Наименьшую силу тяги мышца демонстрирует при преодолевающем режиме сокращения. С чем большей скоростью укорачивается мышца, тем меньшую силу тяги она проявляет.

Взаимодействие человека с окружающей средой, осуществляемое за счет активности соответствующих мышц, происходит через звенья тела, которые в биомеханике рассматриваются как система костных рычагов.

Напомним, что рычаг - это твердое тело, которое может вращаться под действием приложенных сил и служит для передачи силы и работы на расстояние. Выделяют два вида рычагов - одноплечие (рычаг второго рода) и двуплечие (рычаг первого рода). Равновесие или движение рычага определяется соотношением моментов сил, приложенных к нему.

Рассмотрим действие мышц на костный рычаг в кинематической паре. В качестве примера приведем действие мышц-сгибателей предплечья при задании удержать в руке груз массой 10 кг. Чтобы упростить задачу, заменим все мышцы-сгибатели локтевого сустава одной эквивалентной мышцей (рис. 3). Такой прием часто используют в биомеханике. Предположим также, что плечо неподвижно, а предплечье и кисть невесома. Таким образом, в данной системе действуют две силы - сила тяги мышцы (F) и сила тяжести груза (Р). Каждая из этих сил создает момент относительно локтевого сустава. Задание будет выполнено, если момент мышечной тяги будет равен моменту силы тяжести груза. Из равенства моментов сил можно определить силу мышечной тяги, которая в данном примере в десять раз превышает силу тяжести груза. В реальных условиях момент силы мышечной тяги делится между теми мышцами, которые участвуют в его создании.

Рис.3. Условие равновесия рычага и расчет силы тяги мышцы

Проигрыш в силе тяги мышц, характерный для большинства суставов тела человека, отражает весьма важную особенность строения скелетно-мышечной системы. Она состоит в том, что мышцы крепятся очень близко к осям вращения в суставах и как следствие этого имеют малые величины плеч сил. Внешние нагрузки действуют на больших плечах сил. Такое строение приводит к проигрышу в мышечных силах, но к выигрышу в размахе и скорости движения в суставе.


Рис. 4. Зависимость момента силы от угла в локтевом суставе при сгибании предплечья в локтевом суставе

На рис. 4 приведена зависимость силы сгибателей предплечья от угла в локтевом суставе. Видно, что наиболее выгодное положение соответствует углу, близкому к 90°. При увеличении или уменьшении угла момент силы уменьшается.

Основными причинами изменения силовых возможностей человека при изменении угла в суставе являются: 1) изменение плеча силы тяги мышцы; 2) изменение длины мышцы; 3) изменение угла, под которым мышца тянет за кость (рис. 5).

Силу тяги мышцы (Р) можно разложить на две составляющие. Одна из них направлена перпендикулярно предплечью (Я) и создает вращательный момент в суставе. Другая составляющая силы (Р) действует вдоль предплечья и укрепляет сустав, вращательного момента она не создает, поскольку проходит через ось вращения в локтевом суставе.


Рис. 5. Изменение силы тяги двуглавой мышцы плеча (F), составляющих этой силы (Р и К), плеча силы тяги (d) и угла тяги мышцы за предплечье в зависимости от угла в локтевом суставе

Из рисунка видно, что с увеличением угла в суставе длина мышцы увеличивается, а следовательно, увеличивается и сила ее тяги (F) за кость. Однако вращающая составляющая этой силы (К) и плечо силы тяги мышцы (d) изменяются не столь однонаправлено. Наибольшие величины этих показателей соответствуют позе № 3, и поэтому в ней проявляется наибольший момент силы в суставе. Несмотря на то, что в позе № 1 сила тяги мышцы наибольшая, значительная часть ее расходуется на укрепление сустава, а не на поворот звена. Это связано с тем, что мышца тянет под очень острым углом по направлению к предплечью, а значит, составляющая Р будет больше, чем К.

Рассмотренные закономерности действия мышц на костные рычаги характерны для большинства суставов тела человека.

Гораздо более сложные взаимоотношения в действии мышц на костные рычаги наблюдаются в кинематических цепях. Это связано не только с участием в движении большего числа звеньев тела и мышц, но и с тем, что в теле человека довольно много двусуставных мышц, которые в отличие от односуставных мышц обслуживают сразу два сустава. Так, например, прямая мышца бедра разгибает ногу в коленном суставе и сгибает в тазобедренном суставе. Наружная и внутренняя головки трехглавой мышцы голени разгибают стопу в голеностопном суставе и сгибают голень в коленном суставе. Двуглавая мышца плеча сгибает предплечье в локтевом суставе и плечо - в плечевом суставе.


Рис. 6. Зависимость силы давления стопы на опору от угла в коленном суставе при разгибании ноги встатическом положении

На рис. 6 показана зависимость силы давления стопы на опору от угла в коленном суставе при разгибании ноги в статическом положении. Видно, что с увеличением суставного угла сила нелинейно увеличивается и достигает очень больших величин. Показано, что при малых углах в коленном суставе основной вклад в силу давления на опору осуществляют четырехглавые мышцы бедра и ягодичные мышцы. При больших углах в коленном суставе основную роль играют мышцы задней поверхности бедра.

В упражнениях динамического характера действие двусуставных мышц в кинематических цепях существенно отличается от односуставных мышц. Режим сокращения односуставных мышц жестко связан с изменением угла в суставе. Например, при разгибании в коленном суставе односуставные головки четырехглавой мышцы бедра сокращаются в преодолевающем режиме, при сгибании - в уступающем режиме, а при неизменном угле - в изометрическом режиме. Режим сокращения двусуставных мышц зависит от изменения углов в соседних суставах. Например, если одновременно разгибать ногу в тазобедренном и сгибать в коленном суставе, то прямая мышца бедра будет удлиняться и сокращаться в уступающем режиме. Если же в этих суставах происходит сгибание или разгибание, то режим сокращения прямой мышцы бедра будет зависеть от соотношения угловых скоростей в этих суставах.

Экспериментально показано, что действие двусуставных мышц сводится к следующему:

  1. Мышцы могут передавать часть мощности и силы от одних звеньев тела к другим.
  2. Мышцы способны накапливать и затем частично отдавать энергию упругой деформации при изменении длины кинематической цепи за счет разнонаправленного изменения углов в соседних суставах.
  3. Мышцы способны рассеивать (демпфировать) механическую энергию, что особенно важно для уменьшения ударных нагрузок.

В заключение отметим, что знания изложенных выше закономерностей действия мышц необходимо для правильного применения физических упражнений в тренировочном процессе, и особенно в развитии двигательных способностей человека.

Биомеханические основы силовых и скоростно-силовых способностей человека.

Понятие о силовых способностях и показатели, их измеряющие

В биомеханике слово «сила» употребляется в двух смыслах. Сила как мера механического взаимодействия тел, т. е. как одна из механических характеристик, и сила как одна из двигательных способностей человека, характеризующаяся его возможностью противодействовать внешним сопротивлениям за счет мышечных усилий.

Способность человека проявлять силу зависит от многих факторов. Знание и учет этих факторов необходимы не только для реализации человеком своих силовых возможностей, но и для правильной организации тренировочного процесса, направленного на их воспитание.

Следует подчеркнуть, что нельзя говорить о силе человека вообще. Ее проявление всегда связано с выполнением того или иного задания. При этом чаще всего показателями силовых способностей являются максимальная сила или момент силы, измеренные каким-либо устройством, или наибольшая масса поднятого груза (гантели или штанги). Используют и другие показатели, такие как импульс силы, работа, мощность и др.

Факторы, определяющие силу действия человека

Перечислим основные факторы, от которых зависит внешне проявляемая сила человека.

Прежде всего, сила зависит от силовых возможностей отдельных мышц, участвующих в выполнении задания. Отсюда становится очевидной необходимость локального воздействия на определенные мышечные группы. Однако следует помнить, что внешне проявленная сила является результатом активности многих мышц, и поэтому совершенствование межмышечной координации при освоении физических упражнений силового характера является необходимым условием развития силы. Довольно часто быстрые темпы прироста силы в начале занятий физическими упражнениями обусловлены овладением рациональными способами их выполнения и совершенствованием межмышечной координации, а не увеличением силы мышц.

На величину проявляемой силы влияет масса груза, против которого действует человек. Чем больше перемещаемая масса, тем большую силу может проявить человек. Поэтому одним из основных способов регулирования нагрузки является выбор соответствующей массы спортивных снарядов (штанги, гантелей и т. п.).

Следующими факторами являются скорость и ускорение, а также режим сокращения мышц. Чем больше скорость суставных движений при преодолевающем режиме сокращения мышц, тем меньшую силу проявляет человек. При уступающем режиме мышечного сокращения с ростом скорости проявляемая сила увеличивается, и при некоторых оптимальных величинах скорости суставных движений спортсмен может проявить максимум своих силовых возможностей. Не менее важным является характер выполнения упражнений с отягощениями - равномерный или ускоренный. Ниже, при обсуждении природы сил сопротивления, будет более подробно рассмотрен этот вопрос.

Способность проявлять максимальную силу в существенной мере зависит от положения тела. С изменением углов в суставах изменяются показатели действия мышц на костные рычаги. Однако изменение положения тела может существенно изменять величину воздействия одних и тех же внешних нагрузок на мышечный аппарат человека за счет изменения плеча внешне действующей силы, а также на вовлечение мышц в выполняемое задание. На рис. 7 показаны три варианта выполнения приседания со штангой на плечах. Видно, что изменение наклона туловища изменяет не только величины моментов сил в суставах, но и их направление.


Рис. 7. Мышечный момент (Мм) в коленных суставах в приседаниях со штангой на плечах (масса снаряда - 80 кг). F - сила тяжести головы, рук, туловища, бедер и штанги; 4 - плечо этой силы

Так, в первой позе туловище сильно наклонено вперед, и, как следствие этого, результирующий момент силы мышц в коленных суставах направлен на их сгибание, т. е. нагружаются мышцы задней поверхности бедра. И наоборот, при небольшом наклоне туловища вперед основная нагрузка ложится на мышцы - разгибатели коленных суставов. Причина в том, что величина и направление момента силы в суставе зависит от момента силы тяжести звеньев тела и штанги, действующих на данный сустав. Несмотря на то, что в рассматриваемом примере суммарная сила тяжести звеньев тела и снаряда не изменяется, плечо этой силы зависит от положения туловища и бедер. Эта сила приложена в общем центре масс всех звеньев тела, которые расположены выше коленных суставов, и штанги. Таким образом, нагрузку можно регулировать не только массой снаряда, но и плечом внешне действующей силы.

Еще одним фактором, влияющим на силовые способности человека, является природа сил сопротивления. Внешние силы, которые приходится преодолевать или использовать в качестве сопротивлений для тренировки силы, могут иметь разную природу. Перечислим их.

  1. Сила тяжести и инерционная сила, величины которых определяются массой перемещаемого груза и его ускорением.
  2. Сила упругой деформации, величина которой определяется коэффициентом жесткости упругого тела (резины, пружины и т. п.) и степенью его деформации.
  3. Сила трения, величина которой зависит от коэффициента трения и силы нормального давления.
  4. Сила сопротивления среды.

Сестринский персонал, оказывая помощь тяжелобольным, подвергается значительным физическим нагрузкам. Перемещение пациента в постели, подкладывание судна, передвижение носилок, каталок, а иногда и тяжелой аппаратуры может приве­сти в конечном итоге к повреждению позвоночника. Любое быст­рое движение, связанное с перемещением пациента или тяжелого предмета, любое движение, не являющееся физиологическим для позвоночника, увеличивает вероятность его повреждения. Кроме того, постоянные, пусть даже нерезкие «неправильные», нефизиологические движения позвоночника приводят к его травме, которая даст о себе знать со временем.

Мы приводим определение некоторых терминов, которые упоминаются в главе.

Термин

Определение

Механика тела

Способ, которым тело человека при­спосабливается, чтобы не потерять равновесие во время движения

Эффект Вальсальвы (прием, тест, проба)

Натуживание на высоте вдоха внеко­торых случаях может способствовать возникновению тяжелых нарушений ритма сердца и ухудшению коронарно­го кровотока

Постуральный рефлекс

Головокружение, обморок, сердцебие­ние, появляющиеся при изменении по­ложения тела

Правильное положение тела

Положение, при котором спина вы­прямлена и исключены любые искрив­ления, напряжения, давление или чув­ство дискомфорта

Знание биомеханики тела позволит предотвратить травму.

Сидеть, стоять и поднимать тяжести можно с соблюдением определенных правил.

Итак, правильная биомеханика в положении сидя заключает­ся в следующем:

1) колени должны быть чуть выше бедер (это позволит пере­распределить массу тела и уменьшить нагрузку на поясничный отдел позвоночника);

2) спина должна быть прямой, а мышцы живота - напря­женными;

3) плечи должны быть расправлены и расположены симмет­рично бедрам.

Если по роду деятельности сестры ей приходится часто пово­рачиваться в стороны, сидя на стуле, лучше, чтобы этот стул был вертящимся и на колесах. Кроме того, следует правильно подо­брать стул. Для этого сядьте на стул и обопритесь на его спинку. Высота стула и его глубина подобраны правильно, если:

2/3 длины ваших бедер находятся на сиденье;

Стопы без напряжения касаются пола.

Если размер стула не подходит, следует использовать различ­ные приспособления (подушки, подставки для ног), для того чтобы биомеханика тела была правильной.

Правильная биомеханика тела в положении стоя заключается » следующем:

    колени должны быть расслаблены так, чтобы коленные суставы двигались свободно;

    масса тела должна быть распределена равномерно на обе ноги;

    ступни должны быть расставлены на ширину плеч;

    для того чтобы снизить нагрузку на поясничный отдел позвоночника, встаньте прямо и напрягите мышцы живота и яго­диц; голову при этом следует держать прямо, чтобы подбородок находился в горизонтальной плоскости;

    расположите плечи в одной плоскости с бедрами.

Правильная биомеханика при поднятии тяжестей заключается в следующем:

    перед поднятием тяжестей расположите стопы на расстоя­нии 30 см друг от друга, выдвинув одну стопу слегка вперед (этим достигается хорошая опора и уменьшается опасность потеря равновесия и падения);

    встаньте рядом с человеком, которого вам нужно будм. поднимать, так, чтобы вам не нужно было наклоняться вперед*

    прижимайте поднимаемого человека к себе в процессе подъема;

    сгибайте только колени, поднимая человека, сохраняя ту­ловище в вертикальном положении;

    не делайте резких движений.

Используя правильную биомеханику тела, сестра обеспечива­ет себе безопасность, а стало быть, сохраняет свое здоровье.

Сестра, как и весь персонал лечебного учреждения, несет ответственность за безопасность пациента. В процессе ухо­да сестра должна помочь соблюдать и сохранять правильную биомеханику тела, оказывая помощь пациенту, неправильно сидящему в кресле, неудобно лежащему в постели, а также когда он, находясь в положении стоя, подвергается опасности падения.

УЧЕБНИК ДЛЯ ВУЗОВ.

В.И. ДУБРОВСКИЙ, В.Н. ФЕДОРОВА

Москва


Рецензенты:

доктор биологических наук, профессор А.Г. Максина; доктор технических наук, профессор В.Д. Ковалев;

кандидат медицинских наук, лауреат Государственной премии СССР

И.Л. Баднин

Рисунки выполнены художником Н.М. Замешаевой

Дубровский В.И., Федорова В.Н.

Биомеханика: Учеб. для сред, и высш. учеб, заведений. — М.: Изд-во ВЛАДОС-ПРЕСС, 2003. — 672 с.: ил. ISBN 5-305-00101-3.

Учебник написан в соответствии с новой программой изучения биомеханики в высших учебных заведениях. Большое внимание уделено биомеханическому обоснованию применения средств физической культуры и спорта на примере различных видов спорта. Отражены современные подходы к оценке воздействия на технику спортсмена различных физических и климатических факторов, дана биомеханическая характеристика различных видов спорта. Впервые представлены разделы по медицинской биомеханике , биомеханике инвалидов-спортсменов, биомеханическому контролю локомоций и др.

Учебник адресован студентам факультетов физической культуры университетов, институтов физической культуры и медицинских вузов, а также тренерам, спортивным врачам, реабилитологам, занимающимся разработкой и прогнозированием тренировок, лечением и реабилитацией спортсменов и другим специалистам.

© Дубровский В.И., Федорова В.Н., 2003 © «Издательство ВЛАДОС-ПРЕСС», 2003 © Серийное оформление обложки. ISBN 5-305-00101-3 «Издательство ВЛАДОС-ПРЕСС», 2003


ПРЕДИСЛОВИЕ

Любая отрасль человеческих знаний, в том числе такая дисциплина как биомеханика, оперирует некоторым набором исходных определений, понятий и гипотез. С одной стороны, используются фундаментальные определения из математики, физики, общей механики. С другой — биомеханика базируется на данных экспериментальных исследований, важнейшими из которых являются оценка различных видов двигательной деятельности человека, управления ими; определение свойств биомеханических систем при различных способах деформирования; результаты, полученные при решении медико-биологических задач.

Биомеханика находится на стыке разных наук: медицины, физики, математики, физиологии, биофизики, вовлекая в свою сферу различных специалистов, таких как инженеры, конструкторы, технологи, программисты и др.

Биомеханика спорта как учебная дисциплина изучает как движения человека в процессе выполнения физических упражнений, во время соревнований, так и движения отдельных спортивных снарядов.

Существенное значение в современном спорте и физической культуре придается механической прочности, устойчивости тканей опорно-двигательного аппарата, органов, тканей к многократным физическим нагрузкам, особенно при тренировках в экстремальных условиях (среднегорье, высокая влажность, низкая и высокая температура, гипотермия, изменение биоритмов) с учетом телосложения, возраста, пола, функционального состояния человека. Все эти данные могут быть использованы в совершенствовании методики и техники выполнения тех или иных упражнений и тренировочных систем, а также в совершенствовании инвентаря, экипировки и других факторов.

Физическая культура и спорт в нашей стране в последнее десятилетие утратили свое влияние. Это никак не способствует укреплению здоровья человека. Это также сказывается в виде снижения способности противостоять негативным факторам окружающей среды.

Значение спорта во все времена было существенным в предупреждении преждевременного старения, в восстановлении функциональных возможностей организма после болезней и травм.

С развитием науки медицина активно внедряет ее достижения, разрабатывая новые методы лечения, оценки их эффективности, новые методики диагностики. Это, в свою очередь, обогащает спортивную медицину и физическую культуру. В данном учебнике предложены знания физических основ многих вопросов спортивной медицины, которые необходимы преподавателю физкультуры, тренеру, спортивному врачу, массажисту. Эти знания не менее важны, чем знания основ тренировочного процесса. В зависимости от того, как понимается физическая сущность того или иного направления спортивной медицины, в совокупности с медицинскими аспектами можно прогнозировать, дозировать оздоровительный (лечебный) эффект, а также уровень спортивных достижений.

В лечебной физической культуре применяются различные физические упражнения, реализуемые в том или ином виде спорта.

В данном учебнике, по сравнению с ранее вышедшими, впервые для биомеханики спорта изложен материал, показывающий применение законов фундаментальной физики ко многим конкретным направлениям этой дисциплины. Рассмотрены вопросы: кинематика, динамика материальной точки, динамика поступательного движения, виды сил в природе, динамика вращательного движения, неинерциальные системы отсчета, законы сохранения, механические колебания, механические свойства. Представлен большой раздел, показывающий физические основы воздействия различных факторов (механических, звуковых, электромагнитных, радиационных, тепловых), понимание физической сущности которых совершенно необходимо для рационального решения многих задач спортивной медицины.

Профессор В.И. Дубровский и профессор В.Н. Федорова помимо биомеханических методов контроля лиц, занимающихся физкультурой и спортом, представили биомеханические показатели в норме и при патологии (травмы и заболевания опорно-двигательного аппарата, при утомлении и др.), а также при тренировке в экстремальных условиях, у инвалидов-спортсменов и др.

Многие вопросы освещены авторами с учетом развития спорта высших достижений, инвалидного спорта, биомеханики спортивной травмы, различных возрастных периодов развития, с учетом телосложения и техники выполнения тех или иных упражнений в различных видах спорта.

В книге показаны основные направления в развитии биомеханики с использованием современных методов контроля: стационарный и дистанционный контроль за локомоциями; разработка современных технологий инвентаря, экипировки; техники выполнения физических упражнений в различных видах спорта; контроль за выполнением упражнений инвалидами-спортсменами; биомеханический контроль при травмах и заболеваниях опорно-двигательного аппарата и др.

По существу, в каждой главе учебника авторы подчеркивают, что, чтобы успешно выступать на соревнованиях, спортсмен должен владеть рациональной техникой выполнения упражнения, понимая его медико-физическую сущность, должен быть оснащен современной экипировкой, спортинвентарем, должен быть хорошо подготовлен функционально и здоров.

Особое место в учебнике отведено влиянию интенсивных физических нагрузок на структурные (морфологические) изменения в тканях опорно-двигательного аппарата, особенно если несовершенна техника выполнения физических упражнений и методы ее коррекции. Отмечено, что реакция тканей ОДА на физические нагрузки во многом зависит от техники выполнения упражнений, телосложения, возраста, функционального состояния, климато-географических факторов и т. п.

Авторы большое внимание уделяют возможностям использования математических и физических моделей как для различных упражнений, так и для отдельных участков и систем организма человека, в частности, спортсмена, а также тела в целом, для прогнозирования реакций организма на физические нагрузки и различные неблагоприятные факторы воздействия внешней среды. Телосложение, возраст важны для расчетной и модельной оценки пределов переносимости этих воздействий с учетом разнообразных дополнительных факторов.

У нас в стране и за рубежом до сих пор нет учебника, где были бы систематизированы материалы как по теоретическим физико-математическим основам биомеханики спорта, так и по биомеханике в норме и при патологии, с учетом возраста, пола, телосложения и функционального состояния лиц, занимающихся физкультурой и спортом. Особенно это важно при занятии спортом высших достижений, где требования к технике выполнения упражнений исключительные, и малейшие отклонения ведут к травматизму, иногда к инвалидности, снижению спортивных результатов.

Авторы показали, что при современном развитии спорта, особенно спорта высших достижений, биомеханика играет огромную роль для повышения спортивных результатов.

Учебник «Биомеханика» отвечает современным требованиям, предъявляемым к учебникам по медико-биологическим дисциплинам, единым для педагогических, медицинских вузов и институтов физической культуры.

Большое количество информационных таблиц, рисунков, схем, однотипное и четкое разделение материала по структуре в каждой главе, выделенные лаконичные определения делают излагаемый материал очень наглядным, интересным, легко воспринимаемым и запоминаемым.

Этот учебник позволит студентам, тренерам, врачам, методистам ЛФК, преподавателям физкультуры лучше познать основы спортивной биомеханики, спортивной медицины, лечебной физкультуры, а следовательно, успешно и активно использовать их в своей работе. Этот учебник может быть рекомендован знатокам прикладной механики, специализирующимся по биомеханике.

Заведующий кафедрой теоретической механики Пермского государственного технического университета,

доктор технических наук, профессор, заслуженный деятель науки Российской Федерации

Ю.И. Няшин


ВВЕДЕНИЕ

Биомеханика движений человека представляет собой одну из частей более общей дисциплины, кратко называемой «биомеханика».

Биомеханика — это раздел биофизики, в котором изучаются механические свойства тканей, органов и систем живого организма и механические явления, сопровождающие процессы жизнедеятельности. Пользуясь методами теоретической и прикладной механики, эта наука исследует деформацию структурных элементов тела, течение жидкостей и газов в живом организме, движение в пространстве частей тела, устойчивость и управляемость движений и другие вопросы, доступные указанным методам. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Учет биомеханических характеристик дает возможность строить предположения о структуре систем, управляющих физиологическими функциями. До последнего времени основные исследования в области биомеханики были связаны с изучением движений человека и животных. Однако сфера приложения этой науки прогрессивно расширяется; сейчас она включает в себя также изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т. д. Интересные данные получены при изучении эластичного и неэластичного сопротивления грудной клетки, движений газов через дыхательные пути. Предпринимаются попытки обобщенного подхода к анализу движения крови с позиций механики сплошных сред, в частности, изучаются упругие колебания сосудистой стенки. Доказано также, что с точки зрения механики структура сосудистой системы оптимальна для выполнения своих транспортных функций. Реологические исследования в биомеханике обнаружили специфические деформационные свойства многих тканей тела: экспоненциальную нелинейность связи между напряжениями и деформациями, существенную зависимость от времени и т. д. Полученные знания о деформационных свойствах тканей помогают решению некоторых практических задач, в частности, они используются при создании внутренних протезов (клапаны, искусственное сердце, сосуды и пр.). Особенно плодотворно применяется классическая механика твердого тела в изучении движений человека. Часто под биомеханикой понимают именно это ее приложение. При изучении движений биомеханика использует данные антропометрии, анатомии, физиологии нервной и мышечной систем и других биологических дисциплин. Поэтому часто, может быть, в учебных целях, в биомеханику ОДА включают его функциональную анатомию, а иногда и физиологию нервно-мышечной системы, называя это объединение кинезиологией.

Количество управляющих воздействий в нервно-мышечной системе огромно. Тем не менее, нервно-мышечная система обладает удивительной надежностью и широкими компенсаторными возможностями, способностью не только многократно повторять одни и те же стандартные комплексы движений (синергии), но и выполнять стандартные произвольные движения, направленные на достижение определенных целей. Помимо способности организовать и активно заучивать необходимые движения, нервно-мышечная система обеспечивает приспособляемость к быстро меняющимся условиям окружающей и внутренней среды организма, изменяя применительно к этим условиям привычные действия. Эта вариативность имеет не только пассивный характер, но обладает чертами активного поиска, осуществляемого нервной системой, когда она добивается наилучшего решения поставленных задач. Перечисленные способности нервной системы обеспечиваются переработкой в ней информации о движениях, которая поступает по обратным связям, образованным сенсорной афферентацией. Деятельность нервно-мышечной системы отражается во временной, кинематической и динамической структурах движения. Благодаря этому отражению становится возможным, наблюдая механику, получить информацию о регуляции движений и ее нарушениях. Такой возможностью широко пользуются при диагностике заболеваний, в нейрофизиологических исследованиях с помощью специальных тестов при контроле двигательных навыков и обученности инвалидов, спортсменов, космонавтов и в ряде других случаев.


Глава 1 ИСТОРИЯ РАЗВИТИЯ БИОМЕХАНИКИ

Биомеханика — одна из самых старых ветвей биологии. Ее истоками были работы Аристотеля и Галена, посвященные анализу движений животных и человека. Но только благодаря работам одного из самых блистательных людей эпохи Возрождения — Леонардо да Винчи (1452—1519) — биомеханика сделала свой следующий шаг. Леонардо особенно интересовался строением человеческого тела (анатомией) в связи с движением. Он описал механику тела при переходе из положения сидя к положению стоя, при ходьбе вверх и вниз, при прыжках и, по-видимому, впервые дал описание походок.

Р. Декарт (1596—1650) создал основу рефлекторной теории, показав, что причиной движений может быть конкретный фактор внешней среды, воздействующий на органы чувств. Этим объяснялось происхождение непроизвольных движений.

В дальнейшем большое влияние на развитие биомеханики оказал итальянец Д. Борелли (1608—1679) — врач, математик, физик. В своей книге «О движении животных» по сути он положил начало биомеханике как отрасли науки. Он рассматривал организм человека как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики.

Биологическая механика как наука о механическом движении в биологических системах использует в качестве методического аппарата принципы механики.

Механика человека есть новый раздел механики, изучающий целенаправленные движения человека.

Биомеханика — это раздел биологии, изучающий механические свойства живых тканей, органов и организма в целом, а также происходящие в них механические явления (при движении, дыхании и т. д.).

Леонардо ДО Винчи И.П. Павлов

П.Ф. Лесгафт Н.Е. Введенский

Первые шаги в подробном изучении биомеханики движений были сделаны лишь в конце XIX столетия немецкими учеными Брауном и Фишером (V. Braune, О. Fischer), которые разработали совершенную методику регистрации движений, детально изучили динамическую сторону перемещений конечностей и общего центра тяжести (ОЦТ) человека при нормальной ходьбе.

К.Х. Кекчеев (1923) изучал биомеханику патологических походок, используя методику Брауна и Фишера.

П.Ф. Лесгафтом (1837—1909) создана биомеханика физических упражнений, разработанная на основе динамической анатомии. В 1877 г. П.Ф. Лесгафт начал читать лекции по этому предмету на курсах по физическому воспитанию. В Институте физического образования им. П.Ф. Лесгафта этот курс входил в предмет «физическое образование», а в 1927 г. был выделен в самостоятельный предмет под названием «теория движения» ив 1931 г. переименован в курс «Биомеханика физических упражнений».

Большой вклад в познание взаимодействия уровней регуляции движений внес Н.А. Бернштейн (1880— 1968). Им дано теоретическое обоснование процессов управления движениями с позиций общей теории больших систем. Исследования Н.А. Бернштейна позволили установить чрезвычайно важный принцип управления движениями, общепризнанный в настоящее время. Нейрофизиологические концепции Н.А. Бернштейна послужили основой формирования современной теории биомеханики движений человека.

Идеи Н.М. Сеченова о рефлекторной природе управления движениями путем использования чувствительных сигналов, получили развитие в теории Н.А. Бернштейна о кольцевом характере процессов управления.

B.C. Гурфинкель и др. (1965) клинически подтвердили это направление, выявили принцип синергии в организации работы скелетной мускулатуры при регуляции вертикальной позы, а Ф.А. Северин и др. (1967) получили данные о спинальных генераторах (мотонейронах) локомоторных движений. R. Granit (1955) с позиции нейрофизиологии дал анализ механизмов регуляции движений.

R. Granit (1973) отметил, что организация ответов на выходе в конечном счете определяется механическими свойствами двигательных (моторных) единиц (ДЕ) и специфической иерархией процессов активации — включением медленных или быстрых ДЕ, тонических или фазических мотонейронов, альфа-моторного или альфа-гамма-контроля.

Н.А. Бернштейн А.А. Ухтомский

И.М. Сеченов А.Н. Крестовников

Большой вклад в биомеханику спорта внесли R.G. Osterhoud (1968); Т. Duck (1970), R.M. Brown; J.E. Counsilman (1971); S. Plagenhoef (1971); C.W.Buchan (1971); Dal Monte et.al. (1973); M.Saito et al. (1974) и многие другие.

У нас в стране изучение координации движений человека ведется с двадцатых годов XX столетия. Проводились исследования всей биомеханической картины координационной структуры произвольных движений человека с целью установления общих закономерностей, определяющих как центральную регуляцию, так и деятельность мышечной периферии в этом важнейшем жизненном процессе. С тридцатых годов XX века в институтах физкультуры в Москве (Н.А. Бернштейн), в Ленинграде (Е.А. Котикова, Е.Г. Котельникова), в Тбилиси (Л.В. Чхаидзе), в Харькове (Д.Д. Донской) и других городах стала развиваться научная работа по биомеханике. В 1939 г. вышло учебное пособие Е.А. Котиковой «Биомеханика физических упражнений» и в последующие годы в учебники и учебные пособия стал входить раздел «Биомеханическое обоснование спортивной техники по различным видам спорта».

Из биологических наук в биомеханике более других использовались научные данные по анатомии и физиологии. В последующие годы большое влияние на становление и развитие биомеханики как науки оказали динамическая анатомия, физика и физиология, особенно учение о нервизме И.П. Павлова и о функциональных системах П.К. Анохина.

Большой вклад в изучение физиологии двигательного аппарата внес Н.Е. Введенский (1852—1922). Им выполнены исследования процессов возбуждения и торможения в нервной и мышечной тканях. Его работы о физиологической лабильности живых тканей и возбудимых систем, о парабиозе имеют огромное значение для современной физиологии спорта. Большую ценность представляют также его работы о координации движений.

По определению А.А. Ухтомского (1875—1942), биомеханика исследует «каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение». Им показано, что сила мышц при прочих равных условиях зависит от поперечного сечения. Чем больше поперечное сечение мышцы, тем больше она в состоянии поднять груз. А.А. Ухтомский открыл важнейшее физиологическое явление — доминанту в деятельности нервных центров, в частности, при двигательных актах. Большое место в его работах отведено вопросам физиологии двигательного аппарата.

Вопросы физиологии спорта разрабатывал А.Н. Крестовиков (1885—1955). Они были связаны с выяснением механизма мышечной деятельности, в частности, координации движений, формирования двигательных условных рефлексов, этиологии утомления при физической деятельности и другими физиологическими функциями при выполнении физических упражнений.

М.Ф. Иваницкий (1895—1969) разработал функциональную (динамическую) анатомию применительно к задачам физкультуры и спорта, т. е. определил связь анатомии с физкультурой.

Успехи современной физиологии, и, в первую очередь, труды академика П.К. Анохина дали возможность с позиции функциональных систем по-новому взглянуть на биомеханику движений.

Все это дало возможность обобщить физиологические данные с биомеханическими исследованиями и подойти к решению важных вопросов биомеханики движений в современном спорте, спорте высших достижений.

В середине XX века ученые создали протез руки, управляемый электрическими сигналами, поступающими из нервной системы. В 1957 г. у нас в стране была сконструирована модель руки (кисти), которая выполняла биоэлектрические команды типа «сжать— разжать», а в 1964 г. создан протез с обратной связью, т. е. протез, от которого непрерывно поступает в ЦНС информация о силе сжатия или разжатия кисти, о направлении движения руки и тому подобных признаках.

П.К. Анохин

Американские специалисты (E.W. Schrader и др., 1964) создали протез ноги, ампутированной выше колена. Была изготовлена гидравлическая модель коленного сустава, позволяющая добиться естественной ходьбы. Конструкция предусматривает нормальную высоту подъема пятки и вытягивание ноги при ее отводе независимо от скорости ходьбы.

Бурное развитие спорта в СССР послужило основанием развития биомеханики спорта. С 1958 г. во всех институтах физической культуры биомеханика стала обязательной учебной дисциплиной, создавались кафедры биомеханики, разрабатывались программы, издавались учебные пособия, учебники, проводились научно-методические конференции, готовились специалисты.

Как учебный предмет биомеханика выполняет несколько ролей. Во-первых, с ее помощью студент вводится в круг важнейших физико-математических понятий, которые необходимы для расчетов скорости, углов отталкивания, массы тела, расположения ОЦТ и его роли в технике выполнения спортивных движений. Во-вторых, эта дисциплина имеет самостоятельное применение в спортивной практике, потому что представленная в ней система двигательной деятельности с учетом возраста, пола, массы тела, телосложения позволяет выработать рекомендации для работы тренера, учителя физкультуры, методиста лечебной физкультуры и др.

Биомеханические исследования позволили создать новый тип обуви, спортивного инвентаря, оборудования и техники управления ими (велосипеды, горные и прыжковые лыжи, гоночные лыжи, лодки для гребли и многое другое).

Изучение гидродинамических характеристик рыб и дельфинов дало возможность создать специальные костюмы для пловцов, изменить технику плавания, что способствовало повышению скорости плавания.

Биомеханику преподают в высших физкультурных учебных заведениях во многих странах мира. Создано международное общество биомехаников, проводятся конференции, симпозиумы, конгрессы по биомеханике. При Президиуме Российской академии наук создан научный Совет по проблемам биомеханики с секциями, охватывающими проблемы инженерной, медицинской и спортивной биомеханики.


Глава 2 ТОПОГРАФИЯ ТЕЛА ЧЕЛОВЕКА. ОБЩИЕ ДАННЫЕ О ТЕЛЕ ЧЕЛОВЕКА

Тело человека представляет собой с точки зрения механики объект величайшей сложности. Оно состоит из частей, которые с большой степенью точности можно считать твердыми (скелет) и деформируемых полостей (мышцы, сосуды и пр.), причем в этих полостях содержатся текучие и фильтрующиеся среды, не обладающие свойствами обычных жидкостей.

Тело человека в общих чертах сохраняет строение, свойственное всем позвоночным: двуполярность (головной и хвостовой концы), двустороннюю симметрию, преобладание парных органов, наличие осевого скелета, сохранение некоторых (реликтовых) признаков сегментарности (метамерии) и т. п. (рис. 2.1).

К другим морфофункциональным особенностям тела человека относятся: высокополифункциональная верхняя конечность; ровный ряд зубов; развитый головной мозг; прямохождение; пролонгированное детство и др.

В анатомии принято изучать тело человека в вертикальном положении с сомкнутыми нижними и опущенными верхними конечностями.

В каждой части тела выделяют области (рис. 2.2, а, б) головы, шеи, туловища и двух пар верхних и нижних конечностей (см. рис. 2.1,6).

Рис. 2.1. Сегментарное деление спинного мозга. Формирование сплетений из корешков мозга (а). Сегментарная инвервация органов и функциональных систем (б)

На туловище человека обозначают два конца — черепной, или краниальный и хвостовой, или каудальный и четыре поверхности — брюшную, или вентральную, спинную, или дорсальную и две боковых — правую и левую (рис. 2:3).

На конечностях определяют по отношению к туловищу два конца: проксимальный, т. е. более близкий и дистальный, т. е. отдаленный (см. рис. 2.3).

Оси и плоскости

Тело человека построено по типу двубоковой симметрии (оно делится срединной плоскостью на две симметричные половины) и характеризуется наличием внутреннего скелета. Внутри тела наблюдается расчленение на метамеры, или сегменты, т. е. образования однородные по строению и развитию, расположенные в последовательном порядке, в направлении продольной оси тела (например, мышечные, нервные сегменты, позвонки и пр.); центральная нервная система лежит ближе к спинной поверхности туловища, пищеварительная — к брюшной. Как и все млекопитающие, человек имеет молочные железы и покрытую волосами кожу, полость его тела разделена диафрагмой на грудной и брюшной отделы (рис. 2.4).

Рис. 2.2. Области тела человека:

а — передняя поверхность: 7 — теменная область; 2 — лобная область; 3 — область глазницы; 4 — область рта; 5 — подбородочная область; б — передняя область шеи; 7 — латеральная область шеи; 8 — область ключицы; 9 — ладонь кисти; 10 — передняя область предплечья; 11 — передняя локтевая область; 12 — задняя область плеча; 13 — подмышечная область; 14 — грудная область; 15 — подреберная область; 16— надчревная область; 17— пупочная область; 18— боковая область живота; 19 — паховая область; 20 — лобковая область; 21 — медиальная область бедра; 22 — передняя область бедра; 23 — передняя область колена; 24 — передняя область голени; 25 — задняя область голени; 26 — передняя голеностопная область; 27 —тыл стопы; 28 — пяточная область; 29 — тыл кисти; 30 — предплечье; 31 — задняя область предплечья; 32 — задняя локтевая область; 33 — задняя область плеча; 34 — задняя область предплечья; 35 — область молочной железы; 36 — дельтовидная область; 37 — ключично-грудной треугольник; 38 — подключичная ямка; 39 — грудино-ключично-сосцевидная область; 40 — область носа; 41 — височная область.

Рис. 2.3. Взаимное положение частей в человеческом теле

б — задняя поверхность: 1 — теменная область; 2 — височная область; 3 — лобная область; 4 — область глазницы; 5 — скуловая область; б — щечная область; 7 — поднижнечелюстной треугольник; 8 — грудино-ключично-сосцевидная область; 9—акромиальная область; 10— межлопаточная область; 11 —лопаточная область; 12 — дельтовидная область; 13 — боковая грудная область; 14 — задняя область плеча; 15 — подреберная область; 16 — задняя локтевая область; 17 — задняя область предплечья; 18 — передняя область предплечья; 79 — ладонь кисти; 20 — пяточная область; 21 — подошва стопы; 22 — тыл стопы; 23 — передняя область голени; 24 — задняя область голени; 25 — задняя область колена; 26 — задняя область бедра; 27—заднепроходная область; 28 — ягодичная область; 29 — крестцовая область; 30 — боковая область живота; 31 — поясничная область; 32 — подлопаточная область; 33 — позвоночная область; 34 — задняя область плеча; 35 — задняя локтевая область; 36 — задняя область предплечья; 37 — тыл кисти; 38 — передняя область плеча; 39 — надлопаточная область; 40 — задняя область шеи; 41 — затылочная область

Рис. 2.4. Полости тела

Рис. 2.5. Схема осей и плоскостей в теле человека:

1 — вертикальная (продольная) ось;

2 — фронтальная плоскость; 3 — горизонтальная плоскость; 4 — поперечная ось; 5 — сагиттальная ось; 6 — сагиттальная плоскость

Чтобы лучше ориентироваться относительно взаимного положения частей в человеческом теле, исходят из некоторых основных плоскостей и направлений (рис. 2.5). Термины «верхний», «нижний», «передний», «задний» относятся к вертикальному положению тела человека. Плоскость, делящая тело в вертикальном направлении на две симметричные половины, именуется срединной. Плоскости, параллельные срединной, называются сагиттальными (лат. sagitta — стрела); они делят тело на отрезки, расположенные в направлении справа налево. Перпендикулярно срединной плоскости идут фронтальные, т. е. параллельные лбу (фр. front — лоб) плоскости; они рассекают тело на отрезки, расположенные в направлении спереди назад. Перпендикулярно срединной и фронтальной плоскости проводятся горизонтальные, или поперечные плоскости, разделяющие тело на отрезки, расположенные друг над другом. Сагиттальных (за исключением срединной), фронтальных и горизонтальных плоскостей можно провести произвольное количество, т. е. через любую точку поверхности тела или органа.

Терминами «медиально» и «латерально» пользуются для обозначения частей тела по отношению к срединной плоскости: medialis — находящийся ближе к срединной плоскости, lateralis — дальше от нее. С этими терминами не надо смешивать термины «внутренний» — interims и «наружный» — externus, которые употребляются только по отношению к стенкам полостей. Слова «брюшной» — ventralis, «спинной» — dorsalis, «правый» — dexter, «левый» — sinister, «поверхностный» — superficial, «глубокий» — profundus не нуждаются в объяснении. Для обозначения пространственных отношений на конечностях приняты термины «proximalis» и «distalis», т. е. находящийся ближе и дальше от места соединения конечности с туловищем.

Для определения проекции внутренних органов проводят ряд вертикальных линий: переднюю и заднюю срединные — соответственно сечениям срединной плоскости; правую и левую грудинные— по боковым краям грудины; правую и левую срединноключичные — через середину ключицы; правую и левую окологрудинные — посередине между грудиной и срединноключичной; правую и левую переднеподкрыльцовые — соответственно переднему краю подкрыльцовой ямки; правую и левую срединноподкрыльцовые — исходящие из глубины одноименной ямки; правую и левую заднеподкрыльцовые — соответственно заднему краю подкрыльцовой ямки; правую и левую лопаточные — через нижний угол лопатки; правую и левую околопозвоночные — посередине между лопаточной и задней срединной линиями (соответствует верхушкам поперечных отростков).

Краткие данные о центре тяжести тела человека

Функция нижних конечностей человека, если исключить многие физические упражнения, определяется главным образом опорой (положение стоя) и локомоцией (ходьба, бег). И в том, и в другом случае на функцию нижних конечностей, в отличие от верхних, имеет значительное влияние общий центр тяжести (ОЦТ) тела человека (рис. 2.6).

Рис. 2.6. Расположение общего центра тяжести при различных видах стояния: 1 — при напряженном; 2 — при антропометрическом; 3 — при спокойном

Во многих задачах механики удобно и допустимо рассматривать массу какого-то тела так, как будто она сконцентрирована в одной точке — центре тяжести (ЦТ). Поскольку нам предстоит анализировать силы, действующие на тело человека во время выполнения физических упражнений и стоя (покой), нам следует знать, где находится ЦТ у человека в норме и при патологии (сколиоз, коксартроз, ДЦП, ампутации конечности и др.).

В общей биомеханике важным является изучение расположения центра тяжести (ЦТ) тела, его проекции на площадь опоры, а также пространственного соотношения между вектором ЦТ и различными суставами (рис. 2.7). Это позволяет изучать возможности блокировки суставов, оценить компенсаторные, приспособительные изменения в опорно-двигательном аппарате (ОДА). У взрослых мужчин (в среднем) ОЦТ располагается на 15 мм позади от передне-нижнего края тела V поясничного позвонка. У женщин ЦТ в среднем располагается на 55 мм спереди от передне-нижнего края I крестцового позвонка (рис. 2.8).

Во фронтальной плоскости ОЦТ незначительно (на 2,6 мм у мужчин и на 1,3 мм у женщин) смещен вправо, т. е. правая нога принимает несколько большую нагрузку, чем левая.

Рис. 2.7. Виды положения тела человека стоя: 1 — антропометрическое положение; 2 — спокойное положение; 3 — напряженное положение: Кружок с точкой в центре, находящийся в области таза, показывает положение общего центра тяжести тела; в области головы — положение центра тяжести головы; в области кисти — положение общего центра тяжести кисти. Черные точки показывают поперечные оси суставов верхней и нижней конечностей, а так же атланто-затылочного сустава

Рис. 2.8. Расположение центра

тяжести (ЦТ): а — у мужчин; б — у женщин

Общий центр тяжести (ОЦТ) тела слагается из центров тяжести отдельных частей тела (парциальные центры тяжести) (рис. 2.9). Поэтому при движениях и перемещении массы частей тела перемещается и общий центр тяжести, но для сохранения равновесия его проекция не должна выходить за пределы площади опоры.

Рис. 2.9. Расположение центров тяжести отдельных частей тела

Рис. 2.10. Положение общего центра тяжести тела: а — у мужчин одинакового роста, но различного телосложения; б—у мужчин разного роста; в — у мужчин и женщин

Высота положения ОЦТ у разных людей значительно варьирует в зависимости от целого ряда факторов, к числу которых в первую очередь относятся пол, возраст, телосложение и пр. (рис. 2.10).

У женщин ОЦТ обычно "располагается несколько ниже, чем у мужчин (см. рис. 2.8).

У детей раннего возраста ОЦТ тела расположен выше, чем у взрослых.

При изменении взаимного расположения частей тела, проекция его ОЦТ также меняется (рис. 2.11). Меняется при этом и устойчивость тела. В практике спорта (обучение упражнениям и тренировки) и при выполнении упражнений лечебной гимнастики этот вопрос очень важен, так как при большей устойчивости тела можно выполнять движения с большей амплитудой без нарушения равновесия.

Рис. 2.11. Положение общего центра тяжести при различных положениях тела

Устойчивость тела определяется величиной площади опоры, высотой расположения ОЦТ тела и местом прохождения вертикали, опущенной из ОЦТ, внутри площади опоры (см. рис. 2.7). Чем больше площадь опоры и чем ниже расположен ОЦТ тела, тем больше устойчивость тела.

Количественным выражением степени устойчивости тела в том или ином положении является угол устойчивости (УУ). УУ называется угол, образованный вертикалью, опущенной из ОЦТ тела и прямой, проведенной из ОЦТ тела к краю площади опоры (рис. 2.12). Чем больше угол устойчивости, тем больше степень устойчивости тела.

Рис. 2.12. Углы устойчивости при Рис. 2.13. Плечи силы тяжести по

выполнении упражнения «шпагат»: отношению к поперечным осям

а — угол устойчивости назад; вращения в тазобедренном, коленном

р — угол устойчивости вперед; и голеностопном суставах опорной

Р — сила тяжести ноги конькобежца

(по М.Ф. Иваницкому)

Вертикаль, опущенная из ОЦТ тела, проходит на некотором расстоянии от осей вращения суставов. В связи с этим сила тяжести в любом положении тела имеет по отношению к каждому суставу определенный момент вращения, равный произведению величины силы тяжести на ее плечо. Плечом силы тяжести является перпендикуляр, проведенный из центра сустава к вертикали, опущенной из ОЦТ тела (рис. 2.13). Чем больше плечо силы тяжести, тем больший момент вращения она имеет по отношению к суставу.

Масса частей тела определяется различными способами. Если у разных людей абсолютная масса частей тела будет значительно различаться, то относительная масса, выраженная в процентах, достаточно постоянна (см. табл. 5.1).

Очень большое значение имеют данные о массе частей тела, а также о расположении парциальных центров тяжести и моментов инерции в медицине (для конструирования протезов, ортопедической обуви и т. п.) и в спорте (для конструирования спортивного инвентаря, обуви и т. п.).

Организм, орган, система органов, ткани

Организмом называется всякое живое существо, основными свойствами которого являются: постоянный обмен веществ и энергии (внутри себя и с окружающей средой); самообновление; движение; раздражаемость и реактивность; саморегулирование; рост и развитие; наследственность и изменчивость; приспособляемость к условиям существования. Чем сложнее устроен организм, тем в большей мере он сохраняет постоянство внутренней среды — гомеостаз (температура тела, биохимический состав крови и др.) независимо от меняющихся условий внешней среды.

Эволюция происходила под знаком двух противоположных тенденций: дифференциации, или разделения тела на ткани, органы, системы (с соответствующим и одновременным разделением и специализацией функций), и интеграции, или объединения частей в целостный организм.

Органом называют более или менее обособленную часть организма (печень, почка, глаз и т. д.), выполняющую одну или несколько функций. В образовании органа принимают участие различные по строению и физиологической роли ткани, возникшие в течение длительной эволюции как совокупность приспособительных механизмов. Одни органы (печень, поджелудочная железа и др.) имеют сложное строение, причем каждый их компонент выполняет свою функцию. В других случаях составляющие тот или иной орган (сердце, щитовидная железа, почка, матка и др.) клеточные структуры подчинены выполнению единой сложной функции (кровообращение, мочеотделение и др.).

Опорно-двигательный аппарат (ОДА) человека состоит из двух частей: пассивной и активной .

Пассивная часть ОДА содержит следующие элементы:

  • кости скелета — 206 костей (85 парных и 36 непарных).
  • соединения костей (непрерывные, полупрерывные и прерывные) - анатомические образования, позволяющие объединять кости скелета в единое целое, удерживая их друг возле друга и обеспечивая им определенную степень подвижности. Биомеханика ОДА рассматривает в основном прерывные соединения костей - суставы.
  • связки - упругие образования, служащие для укрепления соединения костей и ограничения подвижности между ними.

Активная часть ОДА содержит следующие элементы:

  • скелетные мышцы (более 600).
  • Двигательные нервные клетки (мотонейроны). Двигательные нейроны расположены в сером веществе спинного и продолговатого мозга. По длинным отросткам (аксонам) этих клеток к мышцам поступают сигналы из центральной нервной системы (ЦНС).
  • Рецепторы ОДА. Различные рецепторы, расположенные в мышцах, сухожилиях и суставах информируют ЦНС о текущем состоянии элементов ОДА.
  • Чувствительные нейроны (афферентные нейроны). По чувствительным нервным клеткам информация от рецепторов мышц, сухожилий и суставов поступает в ЦНС. Тела чувствительных нейронов вынесены за пределы ЦНС и лежат в чувствительных узлах спинномозговых и черепных нервов (ганглиях).

Биомеханическими функциями ОДА являются:

  • опорная - обеспечивает опору для мягких тканей и органов, а также удержание вышележащих сегментов тела;
  • локомоторная (двигательная) - обеспечивает перемещение тела человека в пространстве;
  • защитная - защищает внутренние органы от повреждений.

С точки зрения биомеханики, опорно-двигательный аппарат человека представляет собой управляемую систему подвижно соединенных тел, обладающих определенными размерами, массами, моментами инерции и снабженных мышечными двигателями.

5.2. Строение, функции и механические свойства элементов ОДА человека

5.2.1. Кости

Кость - элемент ОДА человека, представляющий собой жесткую конструкцию из нескольких материалов, различных по механическим свойствам. В основном кость состоит из костной ткани, которую сверху покрывает соединительнотканная оболочка - надкостница. Костная ткань образована плотным компактным и рыхлым губчатым веществом. Суставные поверхности кости покрыты суставным хрящом.

Различают механические функции костей скелета (опорную, локомоторную и защитную) и биологические (участие в минеральном обмене, кроветворную и иммунную). В биомеханике ОДА рассматриваются механические функции костей и связанные с ними механические свойства .

Опорная функция костей связана с их центральным положением внутри каждого сегмента тела человека, которое обеспечивает механическую опору другим элементам ОДА: мышцам и связкам. Кроме того, кости нижних конечностей и позвоночника обеспечивают опору для вышележащих сегментов тела. Скелетные мышцы приводят в движение костные рычаги или обеспечивают сохранение равновесия. Благодаря этому возможно выполнение двигательных действий и статических положений. В этом проявляется локомоторная функция костей . Кости черепа, грудной клетки и таза защищают внутренние органы от повреждений. В этом проявляется защитная функция костей.

Механические свойства костей определяются их разнообразными функциями. Кости ног и рук состоят из плотной костной ткани. Они продолговатые и трубчатые по строению, что позволяет, с одной стороны, противодействовать значительным внешним нагрузкам, а с другой - более чем в два раза уменьшить их массу и моменты инерции.

Основным механическим свойством костной ткани является прочность - способность материала сопротивляться разрушению под действием внешних сил. Прочность материала характеризуется пределом прочности - отношением нагрузки, необходимой для полного разрыва (разрушения испытуемого образца) к площади его поперечного сечения в месте разрыва.

Различают четыре вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.

Прочность костной ткани при растяжении составляет от 125 до 150 МПа . Она выше, чем у дуба и почти такая же, как у чугуна. При сжатии прочность костей еще выше. Ее значения равны 170 МПа. Несущая способность костей при изгибе значительно меньше. Например, бедренная кость выдерживает нагрузку на изгиб до 2500 Н. Подобный вид деформации широко распространен, как в обычной жизни, так и в спорте. Например, при удержании спортсменом положения «крест» на кольцах происходит деформация костей верхней конечности на изгиб.

При движениях кости не только растягиваются, сжимаются и изгибаются, но и скручиваются. Прочность кости при кручении составляет 105,4 МПа. Она наиболее высока в 25-35 лет. С возрастом этот показатель снижается до 90 МПа.

Механические нагрузки, действующие на человека при занятиях спортом, превышают повседневные. Чтобы им противостоять, в костях происходит ряд изменений: меняются их форма и размеры а также повышается плотность костной ткани. Так, например, у тяжелоатлетов сильно меняется форма лопатки и ключицы. У теннисистов увеличиваются размеры костей предплечья, у штангистов и метателей диска утолщаются кости бедра, у бегунов и хоккеистов - кости голени, у футболистов - кости стопы (В.И. Козлов, А.А. Гладышева, 1977).

5.2.2. Суставы

Сустав - элемент ОДА, обеспечивающий соединение костных звеньев и создающий подвижность костей друг относительно друга. Суставы являются наиболее совершенными видами соединения костей. У человека их около 200.

Сустав образуют суставные поверхности сочлененных костных звеньев. Между суставными поверхностями имеется суставная полость, в которую поступает синовиальная жидкость. Окружает сустав суставная капсула, состоящая из плотной соединительной ткани.

Основной функцией суставов является обеспечение подвижности костных звеньев друг относительно друга. С этой целью поверхность суставов смачивается синовиальной жидкостью (смазкой), которая выделяется суставным хрящом при увеличении нагрузки на сустав. При уменьшении нагрузки синовиальная жидкость поглощается суставным хрящом. Чтобы компенсировать разрушение суставного хряща при трении в нем постоянно происходят процессы регенерации.

Присутствие синовиальной жидкости обеспечивает низкий коэффициент трения в суставе (от 0,005 до 0,02). Напомним, что коэффициент трения при ходьбе (резина по бетону) составляет 0,75.

Прочность суставного хряща составляет 25,5 МПа. Если давление на суставной хрящ превышает эти показатели, смачивание суставного хряща синовиальной жидкостью прекращается и увеличивается опасность его механического стирания. В среднем и пожилом возрасте выделение синовиальной жидкости в суставную полость уменьшается.

Опорно-двигательный аппарат человека с позиции теории машин и механизмов, можно рассматривать как сложный биомеханизм, состоящий из жестких звеньев (костей) и кинематических пар определенных классов (суставов). С этой точки зрения различают:

Одноосные суставы. Движения в них происходят только вокруг одной оси. Эти суставы обладают одной степенью свободы. В организме человека таких суставов насчитывается 85.

Двуосные суставы. Движения в них происходят вокруг двух осей. Эти суставы обладают двумя степенями свободы. В организме человека 33 двуосных сустава.

Многоосные суставы . Движения в них происходят вокруг трех осей. Эти суставы обладают тремя степенями свободы. В организме человека таких суставов 29.

Для определения числа степеней свободы ОДА человека применяют формулу Сомова-Малышева.

Число степеней свободы для модели тела человека с 148 подвижными звеньями составляет: n = 6 × 148 — 5 × 85 — 4 × 33 — 3 × 29 = 244. Это означает, что для описания положения модели тела человека в каждый момент времени необходимо иметь 244 уравнения.

Для количественных оценок параметров движения важно знать положение мгновенных осей вращения в суставе, так как это влияет на значение плеч сил отдельных мышц. Мгновенные оси вращения в суставах могут смещаться. Это происходит из-за того, что в суставах могут осуществляться три типа движения сочленяющихся поверхностей: скольжение, сдвиг и качение. Возможность таких движений обусловлена тем, что соприкасающиеся суставные поверхности не тождественны по форме.

Под влиянием занятий спортом адаптация суставов ОДА происходит разнонаправленно: в одних суставах подвижность увеличивается, в других - уменьшается. Так, у велосипедистов наибольшая подвижность отмечается в голеностопном суставе и наименьшая - в тазобедренном и плечевом (М.Г.Ткачук, И.А.Степаник, 2010).

5.2.3. Сухожилия и связки

Сухожилие - компонент мышцы, обеспечивающий ее соединение с костью. Основной функцией сухожилия является передача усилия мышц кости. Связки - компонент сустава, обеспечивающий его стабилизацию, посредством удержания костных звеньев в непосредственной близости друг относительно друга.

Сухожилия и связки характеризуются следующими механическими свойствами: прочностью, значением относительной деформации (ε), а также упругостью, которую численно характеризует модуль продольной упругости (модуль Юнга).

Сухожилия состоят из толстых, плотно уложенных в пучки структурных единиц - фибрилл, в состав которых входят коллагеновые волокна. Основное свойство коллагена - высокая прочность на разрыв и небольшая относительная деформация (ε ≈ 10%).

Связки, как и сухожилия, состоят главным образом из пучков коллагеновых волокон, расположенных параллельно друг другу. Однако в отличие от сухожилий в состав связок входит достаточное большое количество волокон эластина. Эластин - упругий белок, который может очень сильно растягиваться (относительная деформация составляет 200-300%).

Механические свойства сухожилий и связок зависят от их размеров и состава. Чем больше поперечное сечение и больший процент коллагеновых волокон - тем выше прочность. Чем связка длиннее, и чем больше в ней волокон эластина - тем большей значение относительной деформации.

Прочность сухожилий составляет 40-60 МПа, а связок - 25МПа. Следует заметить, что предел прочности каната из хлопка на растяжение составляет 30-60 МПа.

На прочность связок и сухожилий влияет уровень гормонов. Доказано, что систематическое введение гормонов может привести к значительному уменьшению их прочности. Значительно снижает прочность связок и сухожилий иммобилизация. И, наоборот, при исследовании животных была найдена связь между уровнем физической активности и прочностью сухожилий и связок. Доказано, что в подавляющем большинстве случаев прочность сухожилий более высока, чем прочность их прикрепления к костям. Поэтому при травмах сухожилий они не разрываются, а отрываются от места прикрепления. Следует учитывать также, что в процессе тренировок прочность сухожилий и связок увеличивается сравнительно медленно. При форсированном развитии скоростно-силовых качеств мышц может возникнуть несоответствие между возросшими скоростно-силовыми возможностями мышечного аппарата и недостаточной прочностью сухожилий и связок. Это грозит потенциальными травмами (А.С. Аруин, В.М. Зациорский, В.Н. Селуянов, 1981).

Модуль Юнга (Е ) численно равен напряжению, увеличивающему длину образца в два раза. Модуль Юнга для костной ткани составляет 2000МПа, а сухожилия - 160МПа. Материал коллаген характеризуется значением модуля Юнга равным 10-100 МПа, а эластин - 0,5 МПа. Следует отметить, что значение модулем Юнга для резины составляет 5МПа, а для древесины - 1200 МПа (В.И. Дубровский, В.Н. Федорова, 2003).

Связки и сухожилия характеризуются нелинейными свойствами - модуль упругости изменяется по мере изменения их длины.

5.3. Биомеханические свойства и особенности строения ОДА человека

На биомеханические свойства ОДА человека оказывают влияние особенности его строения.

Во-первых , костные звенья и соединяющие их суставы представляют собой рычаги. Это означает, что результирующее действие мышцы при вращательных движениях, каковыми являются движения звеньев тела в организме человека, определяется не силой, а моментом силы (произведением силы тяги мышцы на ее плечо). Момент силы мышцы будет максимальным, если в фазы движения, соответствующие максимальным значениям силы мышц, будут достигаться максимальные значения плеч сил мышц. Однако изучение изменения длины и плеча силы тяги при выполнении двигательных действий показало (И.М. Козлов, 1984), что опорно-двигательный аппарат человека и животных устроен так, что у большинства односуставных мышц (мышц, обслуживающих движения в одном суставе) уменьшение длины мышцы (падение силы тяги) компенсируется увеличением плеча силы. Это позволяет сохранить значение суставного момента постоянным на протяжении значительного диапазона изменения длины мышцы. Для двусуставных мышц (мышц, обслуживающих движения в двух суставах) уменьшение плеча силы тяги в одном сочленении сопровождается увеличением этого параметра относительно другого сустава.

Во-вторых, ОДА человека и животных устроен таким образом, что сила мышцы , как правило, приложена на более коротком плече рычага . Поэтому мышцы, действующие на костные рычаги, почти всегда имеют проигрыш в силе, однако выигрывают в перемещении и скорости (Н.Б. Кичайкина с соавт., 2008).

Третья особенность функционирования ОДА человека и животных проявляется в том, что мышцы, обеспечивающие движения в суставах могут только тянуть, но не толкать. Поэтому для того, чтобы осуществлять движения в противоположных направлениях, необходимо, чтобы движение звеньев тела осуществлялось мышцами-антагонистами . Следует отметить, что мышцы-антагонисты обеспечивают не только движения звеньев тела в различных направлениях, но также и высокую точность двигательных действий. Это связано с тем, что звено необходимо не только привести в движение, но и затормозить в нужный момент времени.

Четвертой особенностью строения ОДА человека и животных является наличие мышц-синергистов . Наш опорно-двигательный аппарат устроен таким образом, что перемещение костных звеньев в одном направлении может осуществляться под действием различных мышц. Мышцы-синергисты перемещают звенья в одном направлении и могут функционировать как вместе, так и по отдельности. В результате синергетического действия мышц увеличивается их результирующая сила. Если же мышца травмирована или утомлена ее синергисты обеспечат выполнение двигательного действия.

Пятой особенностью строения ОДА человека и животных является наличие мышц, обладающих различной структурой: с параллельным и перистым ходом мышечных волокон. Установлено, что мышцы, имеющие параллельный ход мышечных волокон выигрывают в скорости сокращения, по сравнению с перистыми мышцами. Однако мышцы, обладающие перистым строением, дают выигрыш в силе. Поэтому антигравитационные мышцы - то есть мышцы, противодействующие силе тяжести, расположенные на нижней конечности имеют перистую структуру.

5.4. Биомеханика мышц

5.4.1. Виды работы мышц и режимы мышечного сокращения

Различают два вида работы мышц:

  • статическая (звенья ОДА фиксированы, движение отсутствует);
  • динамическая (звенья ОДА перемещаются относительно друг друга).

Различают три режима мышечного сокращения:

  • изометрический - режим мышечного сокращения, при котором момент силы мышцы равен моменту внешней силы (длина мышцы не изменяется). Изометрический режим соответствует статической работе.
  • преодолевающий (концентрический) - режим мышечного сокращения, при котором момент силы мышцы больше момента внешней силы (длина мышцы уменьшается).
  • уступающий (эксцентрический) - режим мышечного сокращения, при котором момент силы мышцы меньше момента внешней силы (длина мышцы увеличивается).

Преодолевающий и уступающий режимы соответствуют динамической работе. Тренировка с использованием различных режимов мышечного сокращения может привести к различным тренировочным эффектам. Так, использование уступающего режима мышечного сокращения по сравнению с преодолевающим, приводит к бо льшей гипертрофии скелетных мышц.

5.4.2. Биомеханические свойства мышц

Биомеханические свойства скелетных мышц - это характеристики, которые регистрируют при механическом воздействии на мышцу.

К биомеханическим свойствам мышц относят: сократимость, жесткость, вязкость, прочность и релаксацию.

Сократимость

Сократимость - способность мышцы укорачиваться при возбуждении, в результате чего возникает сила тяги.

Установлено, что во время сокращения (укорочения) мышцы длина толстого и тонкого филаментов не изменяется. При этом неизменной особенностью сокращения является центральное положение толстого филамента в саркомере, посередине между Z-линиями, рис.5.1.

Исходя из этих наблюдений, была выдвинута «теория скользящих нитей». В соответствии с этой теорией изменение длины саркомера обусловлено скольжением толстого и тонкого филаментов относительно друг друга (H.E. Huxley, J. Hanson., 1954; A.F. Huxley R. Niedergerke, 1954). Процесс сокращения происходит следующим образом. При активации мышцы, прикрепленные к противоположным Z-мембранам тонкие филаменты скользят вдоль толстых. Скольжение происходит благодаря наличию выступов (головок) на нитях миозина, получивших название поперечных мостиков. Так как при сокращении мышцы расстояние между Z-мембранами уменьшается, происходит уменьшение длины мышцы. В виду того, что саркомер представляет собой не плоскую, а объемную структуру, при сокращении мышцы происходит не только уменьшение ее длины, но и увеличение ее поперечного сечения (когда тонкие нити втягиваются в толстые).

Установлено, что зависимость сила, развиваемая саркомером, зависит от его длины. Выявлено, что существуют критические значения длины саркомера, при которых развиваемая им сила падает до нуля. Первое критическое значение длины саркомера равно 1,27 мкм. Оно соответствует максимальному укорочению мышцы. В этом состоянии мышцы регулярность расположения нитей нарушается, они искривляются. Второе критическое значение длины равно 3,65 мкм. Оно соответствует максимальному удлинению мышцы (перекрытия толстых и тонких филаментов нет). Если длина саркомера больше 1,27 мкм и меньше чем 3,65 мкм, значение силы отличается от нуля. При длине саркомера от 1,67 до 2,25 мкм, он развивает максимальную силу.

Существует предельное значение длины саркомера, при котором происходит его разрыв. Это значение равно 3,60 мкм. Чтобы не произошел разрыв, при растягивании мышечных волокон защитную функцию берет на себя соединительный филамент - титин. Благодаря своим упругим свойствам, он предотвращает чрезмерное растяжение саркомера (М.Дж.Алтер, 2001).

Жесткость

Жесткость - характеристика тела, отражающая его сопротивление изменению формы при деформирующих воздействиях (В.Б. Коренберг, 2004). Чем больше жесткость тела, тем меньше оно деформируется под воздействием силы. Жесткость тела характеризуется коэффициентом жесткости (k ). Жесткость линейной упругой системы, например пружины, есть величина постоянная на всем участке деформации.

В отличие от пружины мышца представляет собой систему с нелинейными свойствами. Это связано с тем, что структура мышцы очень сложна. Возникающая в мышце сила упругости не пропорциональна удлинению. Вначале мышца растягивается легко, а затем даже для небольшого ее растяжения необходимо прикладывать все большую силу. Поэтому часто мышцу сравнивают с трикотажным шарфом, который вначале легко растягивается, а затем становится практически нерастяжимым. Иными словами, жесткость мышцы с ее удлинением возрастает. Из этого следует, что мышца представляет собой систему, обладающую переменной жесткостью. Установлено, что жесткость мышцы в активном состоянии в 4-5 раз больше жесткости в пассивном состоянии. Коэффициент жесткости мышц варьирует от 2000 до 3000 Н/м.

Вязкость

Помимо жесткости мышца обладает еще одним важным свойством - вязкостью. Вязкость - свойство жидкостей, газов и «пластических» тел оказывать неинерционное сопротивление перемещению одной их части относительно другой (смещение смежных слоев). При этом часть механической энергии переходит в другие виды, главным образом в тепло. Это свойство сократительного аппарата мышцы вызывает потери энергии при мышечном сокращении, идущие на преодоление вязкого трения. Предполагается, что трение возникает между нитями актина и миозина при сокращении мышцы. Кроме того, трение возникает между возбужденными и невозбужденными волокнами мышцы (мышечные волокна различных типов расположены в мышце в виде мозаики) из-за наличия соединения мышечных волокон коллагеновыми фибриллами. Поэтому, если возбуждены все мышечные волокна, трение должно уменьшаться. Показано, что при сильном возбуждении мышцы, ее вязкость резко снижается (Г.В. Васюков,1967).

Мышца, обладающая бо льшей вязкостью, будет характеризоваться бо льшей площадью «петли гистерезиса». Вы знаете, что при выполнении физических упражнений температура мышц повышается. Повышение температуры мышц связано с упруговязкими свойствами мышцы и с потерями энергии мышечного сокращения на трение. Разогрев мышц (разминка) приводит к тому, что вязкость мышц уменьшается.

Прочность

Предел прочности мышцы оценивается значением растягивающей силы, при которой происходит ее разрыв. Установлено, что предел прочности для миофибрилл равен 16-25 КПа, мышц - 0,2-0,4 МПа, фасций - 14 МПа. Долгое время считалось (Е.К. Жуков, 1969; В.М. Зациорский, 1979), что неизменность длины мышцы при ее работе в изометрическом режиме связана с растяжением сухожилий, однако А.А. Вайном (1990) было указано на то, что прочность сухожилий (предел прочности сухожилий равен 40-60 МПа) значительно превосходит прочность мышечных волокон. Поэтому в латентный период возбуждения мышцы сухожилия практически не изменяют своей длины, и, следовательно, неизменной остается длина мышечных волокон и жестко связанных с ними миофибрилл. Это возможно в том случае, если одни, более слабые элементы миофибрилл (саркомеры) будут растягиваться, а другие, более сильные - укорачиваться.

Релаксация

Релаксация мышц - свойство, проявляющееся в уменьшении с течением времени силы мышцы при ее постоянной длине.

Для оценки релаксации используют показатель - длительность релаксации (τ), то есть промежуток времени, в течение которого сила мышцы уменьшается в е раз от первоначального значения. Многочисленными исследованиями установлено, что высота выпрыгивания вверх с места зависит от длительности паузы между приседанием и отталкиванием. Чем больше эта пауза, то есть чем больше длительность работы мышцы в изометрическом режиме, тем меньше ее сила и как следствие - высота выпрыгивания.

Литература

  1. Алтер М. Дж. Наука о гибкости / М. Дж. Алтер. - Киев: Олимпийская литература. - 2001. - 421 с.
  2. Васюков Г.В. Исследование механических свойств скелетных мышц человека / Г.В. Васюков: Автореф. дис…канд. биол. наук. - М.,1967. - 28 с.
  3. Вайн А.А. Явление передачи механического напряжения в скелетной мышце / А.А. Вайн. - Тарту: Изд. Тартуского университета, 1990. - 34 с.
  4. Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для высших и средних заведений.- М.: ВЛАДОС_ПРЕСС, 2003.&? 672 с.
  5. Жуков Е.К. Очерки по нервно-мышечной физиологии / Е.К. Жуков.- Л.: Наука, 1969. - 288 с
  6. Зациорский В.М., Аруин А.С., Селуянов В.Н. Биомеханика двигательного аппарата человека / В.М. Зациорский, А.С. Аруин, В.Н. Селуянов. - М.: Физкультура и спорт, 1981. - 143 с.
  7. Зациорский, В.М. Биодинамика мышц / В.М. Зациорский // В кн.: Д.Д. Донской, В.М. Зациорский Биомеханика. Учебник для ин-тов физ. культуры. - М.: Физкультура и спорт, 1979б. - С. 45-51.
  8. Кичайкина Н.Б., Степанов В.ВЛебедева., Е.В., Н.Б. Кичайкина, В.В. Степанов, Е.В. Лебедева, 1987
  9. Кичайкина, Н.Б. Биомеханика физических упражнений / Н.Б. Кичайкина, И.М. Козлов, А.В. Самсонова: учебно-методическое пособие. - СПб, 2008.- 164 с.
  10. Козлов, В.И. Основы спортивной морфологии: учебное пособие для ин-тов физической культуры / В.И. Козлов, А.А. Гладышева. - М.: Физкультура и спорт, 1977. - 103 с.
  11. Козлов И.М. Биомеханические факторы организации движений человека: Дис… докт. биол. наук.- Л., 1984.- 307 с.
  12. Ткачук М.Г., Степаник И.А. Анатомия: учебник для студентов высших учеб. заведений / М.Г. Ткачук, И.А. Степаник. - М.: Советский спорт, 2010. - 392 с.
  13. Huxley A.F., Nidergerke R. Structural changes in muscle during contraction; Interference microscopy of living muscle fibres / A.F. Huxley, // Nature,1954. - V.1973. - №. 4412. - P. 971-973.
  14. Huxley H.E., Hanson J. Changes in the cross-striations of muscle during contractions and stretch and their structural interpretation / H.E. Huxley, J. Hanson // Nature, 1954. - V. 173. - N. 4412. - P. 973-976.
  15. Pollack G.H. Muscles &? molecules: Uncovering the principles of biological motion / G.H. Pollack.- Seattle: Ebner&Sons, 1990.

Науку о законах механического движения в живых системах (телах) называют биомеханикой. Для правильного и обоснованного применения лечебной физкультуры и лечении больных необходимо представление о некоторых закономерностях движений человека.

Центр тяжести тела

Когда тело покоится на опоре (или подвешено к ней), сила тяжести прижимает его к опоре (или отрывает от подвеса). Воздействие тела на опору в покое вызывает противодействие последней, направленное на противоположную сторону. По величине противодействия (реакции) опоры судят о величине действия тела на опору. Эта величина является массой тела или силой его тяжести.

В отношении тела человека различают общий центр тяжести (центр массы) для всего тела и центры тяжести для его отдельных звеньев (частей). Общий центр тяжести нормально физически развитого человека находится в области таза приблизительно на уровне второго крестцового позвонка и не является строго фиксированной точкой. Даже при спокойном положении тела перемещение общего центра тяжести происходит постоянно в пределах 5-10 мм. При изменении позы, движениях звеньев тела колебания его могут быть более значительными.

Учет расположения и перемещения общего центра тяжести имеет значение для оценки состояния равновесия тела. Тело находится в равновесии, когда все действующие на него силы уравновешены. Для выяснения равновесия важно определить проекцию общего центра тяжести на площадь опоры. Для этого находят линию гравитации — воображаемую вертикальную линию, проходящую через центр тяжести тела до площади опоры.

Стабильность (устойчивость) равновесия тела на опоре определяется тремя факторами: величиной площади опоры, высотой центра тяжести от опорной поверхности и расположением проекции общего центра тяжести на площадь опоры. Чем ниже расположен центр тяжести и чем ближе к центру площади опоры проходит линия гравитации, тем устойчивее равновесие. Под площадью опоры подразумевается площадь, заключенная между крайними точками опорных поверхностей тела, т. е. площади самих опорных поверхностей и площади пространства между ними.

Следовательно, площадь опоры поддается изменению по величине и форме, в том числе при использовании вспомогательных средств опоры. При обычном вертикальном положении тела линия гравитации проходит в непосредственной близости к центру площади опоры (между стопами в 30 — 50 мм кпереди от оси голеностопных суставов). Тело сохраняет равновесие, если его линия гравитации проходит через площадь опоры. Если линия гравитации выйдет за ее пределы, то равновесие нарушается и тело падает (опрокидывается, перемещается).

Различают два вида раниовесия человека: устойчивое и неустойчивое. Устойчивым равновесием называется такое, при котором общий центр тяжести расположен ниже площади опоры (например, вис на выпрямленных руках). Неустойчивым равновесием называют такое, при котором общий центр тяжести тела расположен выше площади опоры (например, положение стоя на одной ноге). В практике чаще встречается ограниченно устойчивое равновесие, при котором устойчивость сохраняется только в определенных границах отклонений тела, пока линия гравитации проходит в площади опоры.

Человек способен сохранять равновесие и восстанавливать его в случаях нарушения какими — либо возмущающими равновесие силами. Это достигается целенаправленным использованием мышечных движений. Сохраняя положение равновесия, человек управляет своими движениями, активно борется с действием сил, нарушающих его, что принципиально отличается от пассивного уравновешивания неживых тел.

Плоскости и оси движения

Для изучения и регистрации состояния тела человека и его частей принято различать плоскости тела и оси движения. Различают три основные плоскости. Сагиттальная, или переднезадняя (воображаемая), плоскость разделяет тело человека или любую его часть на левую и правую половины (отделы), причем сагиттальную плоскость, проходящую через середину тела, называют срединной плоскостью. Горизонтальная плоскость пересекает тело поперечно, разделяя его на головной (краниальный) и хвостовой (каудальный) отделы.

Горизонтальная плоскость, проведенная на любой конечности, делит ее на проксимальный (ближе к туловищу) и дистальный (далее от туловища) отделы. Фронтальная (параллельная поверхности лба) плоскость делит тело или его части на передний (вентральный) и задний (дорзальный) отделы. Все три плоскости располагаются перпендикулярно друг другу. Всякая другая плоскость может быть только промежуточной по отношению к упомянутым плоскостям.

Все три плоскости при пересечении друг с другом образуют линии, называемые осями вращения. При пересечении сагиттальной и горизонтальной плоскостей образуется сагиттальная ось, и движение вокруг этой оси происходит во фронтальной плоскости. При пересечении фронтальной и горизонтальной плоскостей образуется поперечная ось. Движение воскруг этой оси осуществляется в сагиттальной плоскости. При пересечении сагиттальной и фронтальной плоскостей образуется вертикальная ось. Движение вокруг вертикальной оси происходит в горизонтальной плоскости.

Биомеханика рассматривает аппарат движения человека как управляемые биокинетические цепи, состоящие из звеньев, соединенных между собой суставами, и прикрепляющихся к ним мышц. Вместе они составляют биомеханизм, способный выполнять задаваемые движения. В биокинетической цепи могут сохраняться движения во всех сочленениях, только в части их или это могут быть движения всех звеньев как единого целого. Биокинетические цепи бывают открытые или закрытые (со связанными концевыми звеньями) и в связи с этим имеют различные свойства.

Так, замкнутая биокинетическая цепь не имеет свободного конечного звена, в ней невозможны изолированные движения только в одном суставе. Основная форма движений в суставах — вращение (угловое движение). Максимальное число возможных осей движений в одном суставе — три, и им соответствуют три степени свободы движений.

Различают суставы с одной, двумя и тремя степенями свободы движений. Например, одноосными суставами являются коленный, межфаланговые суставы пальцев, двухосными — лучезапястные суставы, трехосными — плечевой и тазобедренный суставы: Движение в суставе вокруг поперечной оси принято называть сгибанием и разгибанием, вокруг сагиттальной — отведением (кнаружи) и приведением (к срединной плоскости), вокруг вертикальной — вращением, или ротацией (поворот внутрь и кнаружи). Движение вокруг продольной оси конечности или сегмента называют еще пронацией (поворот кнутри) и супинацией (поворот кнаружи). В некоторых суставах возможны еще круговые движения — поочередное пересечение всех осей вращения, при котором свободный конец звена описывает круг (например, плечевой, тазобедренный, лучезапястный суставы).



В соединении двух костных звеньев посредством сустава (биокинетическая пара) возможности движения определяются строением сустава, воздействиями мышц, ограничивающим действием капсулы и связок сустава. Величина подвижности в сочленениях неодинакова у людей разного возраста, пола, связана с индивидуальными особенностями, функциональным состоянием нервной системы. Во всех соединениях костей у женщин подвижность в среднем больше, чем у мужчин; у лиц молодого возраста больше, чем у лиц старшего возраста. При заболеваниях и повреждениях подвижность в суставах может резко уменьшиться.

Измерение движений в суставах

Измерение углов вращения производится с помощью измерительных инструментов. Простейший из них называется угломером, или гониометром, он состоит из транспортира со шкалой 180°, соединенного с двумя браншами. Одна из бранш подвижна. При измерении ось угломера совмещается с осью сустава, а бранши размещаются по оси сочленяющихся проксимального и дистального сегментов. Для преемственности и сравнимости результатов измерений, исключения ошибок необходимы одинаковые методики измерения. Угол максимального разгибания — сгибания сустава в одной плоскости называется амплитудой движения.



При измерении движений в плечевом суставе за исходную величину принимают 0° при опущенной руке и сомкнутых браншах угломера. При измерении движений в локтевом, лучезапястном, тазобедренном и коленном суставах за исходную величину берется 180°. Измерения в голеностопном суставе принято проводить от исходной величины 90°.

Движения туловища в сагиттальной, фронтальной и горизонтальной плоскостях — наклоны, повороты, вращения — осуществляются благодаря подвижным соединениям между позвонками. Подвижность между ними невелика, но в сумме оказывается значительной. Наиболее подвижны шейный и поясничный отделы позвоночника, менее — грудной. Возможны следующие движения туловища: сгибание и разгибание (наклон вперед и разгибание кзади), наклоны в стороны (вправо и влево), ротация вокруг вертикальной оси (поворот вправо и влево) и круговые движения.

Исходное положение (ИП) для измерения движений в суставах шейного отдела позвоночника — сидя на стуле с выпрямленным туловищем и головой, измерение проводят по положению головы. Движения в грудном и поясничном отделах измеряют в положении стоя прямо со слегка расставленными ногами и свободно свисающими руками по линии остистых отростков.

При измерении ротации в поясничном отделе необходимо фиксировать таз, предварительно усадив больного «верхом» на сиденье стула. Движения позвоночника определяют и в градусах (что более сложно), и визуально по максимальным движениям различных отделов.

В шейном отделе позвоночника сгибание в норме совершается до соприкосновения подбородка с грудиной, разгибание — до горизонтального положения затылка, наклоны в стороны — до соприкосновения ушной раковины с надплечьем, при максимальной ротации подбородок касается акромиона. Тренированный взрослый человек при наклоне кпереди может коснуться кончиками пальцев рук пола, не сгибая коленных суставов, при наклоне в сторону кончики пальцев могут коснуться, скользя по наружной поверхности бедра, соответствующего коленного сустава.



Нормальными объемами движений в шейном отделе позвоночника принято считать: разгибание 70°, сгибание 60°, повороты в стороны по 75°, наклоны в стороны по 45°. Наклоны в стороны в грудном и поясничном отделах вместе составляют по 50°. Общая амплитуда сгибания иразгибания в поясничном отделе позвоночника достигает 80°. Суммарные движения всего позвоночного столба возможны в пределах: до 160° — сгибание, до 145° — разгибание, общая амплитуда движения во фронтальной плоскости — до 165° и поворотов в каждую сторону — до 120°.

Рычаги движения

В механике рычагом называется всякая несгибаемая палка, вращающаяся вокруг одной точки (называемой опорной), когда к ней приложена сила и при этом преодолевается какое-то сопротивление или тяжесть. С точки зрения механики каждый сегмент (звено) аппарата движения рассматривают как рычаг, опорной точкой которого является сочленяющийся отдел звена.

Различные свойства рычагов определяются взаимным расположением точки опоры, точек приложения силы и сопротивления рычага. Рычаги бывают 1-го и 2-го рода. Рычаг 1-го рода характеризуется тем, что обе силы направлены в одну сторону, а точка опоры (ось вращения) расположена между точками приложения сил. В рычаге 2-го рода сила и сопротивление имеют различные направления, а точки их приложения расположены по одну сторону от оси вращения. Примером рычага 2-го может быть приподнимание на носок.

Равновесие рычага зависит от длины плеч (расстояний между точками приложения силы и опоры), силы и сопротивления и их величин. Чем длиннее плечо рычага, тем меньшая сила нужна для сохранения его равновесия. Чем короче плечо, тем больше должна быть величина силы.

Следовательно, рычаги с большим плечом силы, чем сопротивления, являются приспособлениями для выигрыша в силе, а с меньшим плечом силы — для выигрыша в расстоянии (в скорости и амплитуде движения) за счет увеличения силы. Например, точка приложения силы (тяги двуглавой мышцы плеча) находится на расстоянии 2 см от оси вращения, а удерживаемый в кисти груз — 25 см. Для поднятия такого груза необходимо усилие двуглавой мышцы, более чем в 10 раз превышающее массу груза.

Эффект работы мышцы в значительной мере зависит от угла, под которым производится ее действие на костный рычаг. Только тяга под углом 90° к рычагу обеспечивает превращение всего усилия мышцы во вращательную силу. Но у человека большинство мышц конечностей располагается вдоль костных сегментов под острым углом и сила сокращающейся мышцы делится на две силы — одна из них направлена параллельно продольной оси сегмента и вызывает его прижатие к смежному сегменту (иногда оттягивание), другая производит полезную работу — вращение сегмента вокруг оси (ротирующая часть силы).

Упоры, висы, ходьба, бег, приседания, прыжки, подскоки с точки зрения биомеханики

Упоры относятся к положениям тела с неустойчивым равновесием. Наиболее типичным является упор лежа. Тело выпрямлено и занимает наклонное положение, голова держится прямо, шейный отдел позвоночника в состоянии небольшого разгибания. Верхние конечности выпрямлены, расположены почти под прямым углом к туловищу и соприкасаются с опорной поверхностью. Нижние конечности также выпрямлены, но находятся под острым углом к опорной поверхности. Все части тела образуют замкнутую кинематическую цепь. Степень устойчивости равновесия сравнительно большая, так как площадь опоры значительных размеров, а высота общего центра тяжести небольшая (30-35 см).

Поэтому в таком положении можно производить различные движения с перемещением частей тела без нарушения равновесия.

К положениям тела при верхней опоре относятся различные висы. Эти положения являются устойчивыми. Наиболее просты из них — «чистый» вис на выпрямленных руках. Тело человека занимает выпрямленное вертикальное положение. Руки подняты вверх, выпрямлены и фиксированы к снаряду. Сила тяжести как бы стремится растянуть тело. Ей противодействует сила мышечной тяги. Работа аппарата движения в этом положении сложна, так как совершается в необычных для организма условиях. Висы относятся к силовым упражнениям. Если в положении виса используется опора ног (смешанный вис), масса тела более равномерно распределяется на мышечные группы, не нарушается функция дыхания. Смешанные висы широко применяют в лечебной физкультуре.

Ходьба — обычная двигательная деятельность человека, это постоянная попеременная активность ног. Когда одна нога, опираясь о землю, служит для поддержки и последующего отталкивания тела (опорная фаза одной ноги), другая, поднятая и висящая в воздухе, перемещается вперед (переносная или маховая фаза другой ноги). Каждая нога последовательно проходит обе фазы — опорную и переносную. Два шага составляют цикл.

Бег — циклические движения шагом, сложный рефлекторный двигательный акт, требующий участия всей скелетной мускулатуры тела, значительного напряжения нервной системы и достаточной физической подготовки человека. Он может дозироваться по скорости, длительности, ширине шага и др.

Приседания — упражнения, выполняемые преимущественно за счет работы мышц нижних конечностей. Стопы могут опираться на площадь опоры всей подошвенной поверхностью или только на головки плюсневых костей и пальцы. Упражнения могут быть облегчены опорой руками в передние поверхности бедер, поддержкой за какой-нибудь предмет. Величина нагрузки дозируется глубиной приседаний, темпом и числом повторений. Упражнения могут быть усложнены и отягощены нагрузкой на свободные руки.

Прыжки характеризуются свободным полетом тела в воздухе в результате отталкивания от опорной поверхности. Основная работа выполняется мышцами нижних конечностей, вспомогательная — мускулатурой туловища и верхних конечностей. Выполнение упражнения обеспечивается одновременным сокращением крупных мышечных групп нижних конечностей, большой амплитудой движений в крупных суставах ног и в плечевых суставах.

Подскоки — это простые прыжки на месте. Основная нагрузка при подскоках падает на сгибатели стопы, В голеностопном суставе при подскоках используется максимальная амплитуда движений. Мышцы тазобедренного и коленного суставов выполняют вспомогательную роль. Движения в этих суставах совершаются с небольшой амплитудой.

Лечение позвоночника и суставов в центре доктра Бубновского -https://kinesis72.ru/

В продолжение темы:
Заборы и ограждения

Сочинение по картине: И. К. Айвазовского "Буря на Черном море".Многие люди восхищаются красотой моря или океана, когда они находится в состоянии покоя, но каждый человек с...

Новые статьи
/
Популярные