Схемы всех кв трансиверов и платы. Схема КВ-трансивера с SSB-модуляцией

Основная плата КВ-трансивера UR4QBP

Схема основной платы трансивера построена на основе уже известных конструкций, а именно Дунай-99, Урал-84, Дружба-М. Учитывая недостатки тех или иных конструкций были выбраны наиболее удачные каскады (на мой взгляд и опыт при отработке данных устройств). Принцип работы каскадов аналогичен работе схем указанных выше конструкций. В качестве ГПД использован синтезатор(89С52), ДПФы и УМ все от Александра UT2FW.

Основная плата рис.1 построена по схеме с одним преобразованием частоты и представляет собой одноплатный тракт трансивера, обеспечивающий прием и передачу сигналов CW, SSB во всех любительских КВ диапазонах. Имея компьютер, и соответствующее программное обеспечение (я использую MixW) можно работать любыми цифровыми видами связи, плата имеет отдельные вход и выход для аудиомодема (гальванической развязки) компьютер-трансивер. Система VOX CW и VOX SSB, отключаемая система АРУ, что немаловажно при работе цифровыми видами связи (при включении на частоте в полосе приема мощной станции, АРУ отрабатывает, и сигнал слабой станции не видно на «водопаде» программы MixW), имеется самоконтроль CW, S-метр, система ALC (можно не использовать).

Чувствительность приемника без УВЧ (УВЧ на плате ДПФ ) не хуже 0,2-0,3 мкВ, забитие - не менее 120 дБ, динамический диапазон при подаче двух сигналов с разносом частот 10 кГц не менее 95 дБ, глубина регулировки системы АРУ не менее 100 дБ, полоса ПЧ приемного тракта (регулируемая) 0,6…2,7 кГц, выходная мощность тракта НЧ на нагрузке 8 Ом не менее 1,5 Вт. Напряжение с выхода основной платы на передачу на нагрузке 50 Ом 200…300 мВ, компрессия сигнала НЧ с микрофона или компьютера около 10 дБ, максимальная глубина регулировки системы ALC не менее 60 дБ, полоса SSB сигнала на передачу 2,7 кГц.

В режиме приема сигнал из ДПФ поступает на вход смесителя построенного по схеме, заимствованной из . Смеситель предусматривает работу с синтезатором частоты из . Fгпд должна быть в два раза выше частоты необходимой для работы обычного смесителя (сигнал F/2 из синтезатора), так как триггер DD2 74AC74 делит частоту Fгпд на два и на его выходах (выводы 5 и 6) мы имеем два противофазных меандра амплитудой 3,6…3,8В обеспечивающих работу транзисторных ключей смесителя. Таблица раскладки частот для ПЧ 8,8625 МГц приведена ниже.

Таблица раскладки частот работы преобразователя частоты

Диапазон,
М

Частота сигнала,
МГц

Частота ГПД,
МГц

Частота синтезатора (F/2),
МГц

Частота ПЧ,
МГц

160

1,81…2,0

10,6725…10,8625

21,345…21,725

8,8625

80

3,5…3,8

12,3625…12,6625

24,725…25,325

8,8625

40

7,0…7,1

15,8625…15,9625

31,725…31,925

8,8625

30

10,1…10,15

18,9625…19,0125

37,925…38,025

8,8625

20

14,0…14,35

5,1375…5,4875

10,275…10,975

8,8625

17

18,068…18,168

9,2055…9,3055

18,411…18,611

8,8625

15

21,0…21,45

12,1375…12,5875

24,275…25,175

8,8625

12

24,89…24,99

16,0275…16,1275

32,055…32,255

8,8625

10

28,0…29,7

19,1375…20,8375

38,275…41,675

8,8625

Сигнал ПЧ с выхода смесителя через конденсатор С4 поступает на вход диплексера, построенного по общеизвестной схеме , ток покоя транзистора VT1 КП903 устанавливается в пределах 30…40 мА с помощью резистора R6. Сигнал ПЧ с выхода диплексера поступает на 6-ти кристальный кварцевый фильтр, выход которого нагружен на катушку связи контура L3C15, настроенного на Fпч. Сигнал ПЧ выделенный контуром L3C15 поступает на вход усилителя промежуточной частоты заимствованной из . Каскад усиления ПЧ VT6, построенный по схеме с общим истоком на полевом транзисторе с двумя изолированными затворами BF998 с резонансным контуром в нагрузке. С катушки связи контура L5C33, настроенного на Fпч, сигнал ПЧ поступает на перестраиваемый кварцевый фильтр, выполняющий роль подчисточного фильтра. Ширина полосы пропускания фильтра изменяется с помощью напряжения +0…13,8В, поданного на вывод 3 платы через, который поступает на варикапы VD7, VD10, VD11 через R44, R48, R49 включенные последовательно конденсаторам С39, C46, C48 кварцевого фильтра и имеет перестраиваемую (0,6…2,7 кГц) полосу пропускания. Выход кварцевого фильтра ZQ2 нагружен на резистор R55. Сигнал ПЧ с фильтра через С50 поступает на усилитель ПЧ аналогичный каскаду VT6. Сток VT9 нагруженный на резонансный контур L7C63 настроенный на Fпч, и через катушку связи поступает на балансный модулятор-демодулятор SSB высокого уровня построенный по двойной балансной схеме. Схема опорного генератора стандартная, заимствованная из , имеет два положения USB и LSB. Реле К1 своими контактами включает последовательно с кварцем катушку L6 в режиме нормальной боковой полосы и конденсаторы С57, С56 - в режиме инверсной. Частота генератора выставляется ниже на 200…300 Гц от частоты нижнего ската кварцевого фильтра по уровню -6дБ. В режиме инверсной боковой полосы частота должна быть выше на 2,7…3,0 кГц. Сигнал НЧ с балансного модулятора-демодулятора выделенный на R74, C73 поступает на вход предварительного усилителя НЧ(VT13), выполненного по схеме заимствованной из . С выхода предварительного УНЧ сигнал через регулятор громкости поступает на усилитель мощности низкой частоты, построенный на ИМС TDA2003 по стандартной схеме. Усиление каскада подбирается с помощью R97. Ключ VT15 запирает вход усилителя мощности НЧ в режиме передачи. Усилитель НЧ имеет два выхода для низкоомной и высокоомной нагрузок AF OUT и PHONE соответственно. Сигнал НЧ, усиленный предварительным усилителем VT13 подается на усилитель АРУ(DD3). Схема АРУ заимствована из . АРУ имеет две ступени быстрый и медленный заряд, C54 и C55 соответственно, с выхода АРУ +Uару поступает на вторые затворы каскадов ПЧ VT6, VT9, тем самым, регулируя усиление каскадов ПЧ.

В режиме передачи SSB сигнал из микрофона или модема компьютера поступает на вход усилителя-компрессора построенного на ИМС BA3308 (полный аналог КА22241). В данной схеме предусмотрена работа микрофонного усилителя с электретным микрофоном “китайского“ производства. Для работы с динамическим микрофоном необходимо удалить резистор R113 и подобрать усиление каскада с помощью R110. Усиление каскада для работы с модемом подбирается с помощью резистора R107. Усиленный сигнал НЧ до уровня ~0,6…0,8В поступает на вход эмиттерного повторителя-ФНЧ, предназначенного для согласования высокоомного выхода ИМС BA3308 с низким входным сопротивлением балансного модулятора-демодулятора. С выхода эмиттерного повторителя сигнал НЧ подается на усилитель VOX VT14 и на балансный модулятор-демодулятор VD19…VD26. Сформированный SSB сигнал через катушку связи контура L7C63 поступает на усилитель VT4 , данный каскад особенностей не имеет. Сигнал усиленный VT4, подается на усилитель DSB VT3, собранный по схеме с общим истоком с резонансным контуром в нагрузке L3C15, на второй затвор транзистора подается напряжение PWR (+10…0V TX), которым регулируется выходная мощность трансивера. Усиленный DSB сигнал через катушку связи поступает на вход кварцевого фильтра ZQ1 выход котрого нагружен на диплексер на VT1. Далее сигнал поступает на смеситель DD1. На выходе формируется полный SSB сигнал с амплитудой около 300…400 мВ. В режиме телеграфа сигнал с телеграфного генератора VT5 подается на вход усилителя VT4 и далее аналогично SSB. Схема тракта передачи заимствована из . Схема коммутации напряжений +12В RX/TX, VOX и CW самоконтроля заимствованы из . Чувствительность VOX устанавливается с помощью подстроечного резистора R121.

Режимы работы основных каскадов настроенной основной платы, реально измеренные цифровым мультиметром, сведены в таблицу. Измерение режимов работы ключей RX/TX, системы VOX не проводились, так как они хорошо выложены в , и как правило, работают без замечаний.

Поз. обозн.
транзистора

Режим

Ik(Ic), mA

Uб(З1), V

Uk(З2),V

Uэ(С),V

Uи, V

Примечание

30…40

30…40

0…10

13,7

3,58

5,38

0…10

13,6

3,58

13,7

3,87

10,4

CW ON

12,4

CW OFF

13,5

13,2

3,36

11,0

3,42

Антенна отключена, Uару максимальное

3,33

13,2

0,58

0,05

12,4

Антенна отключена

60dB

5,03

1,57

0,04

13,6

Антенна отключена

60dB

13,6

3,63

Уровень сигнала на входе RX +60dB

3,33

6,76

10,3

3,39

VT10

RX/TX

12,9

VT11

RX/TX

1,58

VT12

RX/TX

9,48

13,7

9,14

VT13

RX/TX

0,61

2,25

0,03

VT14

RX/TX

1,04

2,25

0,42

VT15

0,72

0,01

Схема межблочных соединений рис.2 аналогична схеме портативного КВ-трансивера . Схема модема рис.3 очень простая, она необходима для гальванической развязки компьютер-трансивер, объяснений как она работает, думаю, не требуется. Уровни сигналов устанавливаются программно в компьютере. Входной сигнал по «водопаду» программы MixW, выходной до начала ограничения уровня сигнала на выходе передатчика (контролируется по индикатору выходной мощности в трансивере или КСВ-метра).

Позиционное обозначение

Диаметр каркаса

Сердечник

Марка и диаметр провода

Количество витков

L3, L5, L7

5мм

СЦР

ПЭЛ 0,12…0,18мм

28 витков контурная и 6 витков поверх катушка связи, в экране

L6

5мм

СЦР

ПЭЛ 0,12…0,18мм

30 витков, в экране

Т2, Т3, Т4

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

8 витков в два провода без скрутки

Т1

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

II-я обмотка 12 витков в два провода, I-я обмотка 5 витков поверх II-ой, провода без скрутки

Т5, Т6

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

8 витков в три провода, провода без скрутки

L1, L2, L4, L9

Стандартные дроссели марки ДМ 0,1 индуктивностью 100µH

L8

Стандартный дроссель марки ДМ 0,1 индуктивностью 15µH

При разработке самодельного многодиапазонного KB трансивера ставилась задача создать простой универсальный приемо-передающий тракт, имеющий минимальную коммутацию цепей в режимах приема и передачи и обеспечивающий отличную повторяе-мость, а значит, с минимумом настроечных элементов. Предлагаемая вниманию читателей схема основного тракта рассчитана на начи-нающих радиолюбителей, не имеющих, как правило, сложных и дорогих контрольно-измерительных приборов. Собрать ее можно практически из того, что "лежит под руками". Опытный радиолюбитель может по своему усмотрению добавить в схему необходимые узлы и сделать маленький легкий трансивер для работы в эфире с дачи или в походе.

Схема основного тракта (рис.1) очень проста, логична и легко "читается". Это классический супергетеродин с одним преобразованием частоты.

В режиме приема (RX) сигнал с выхода диапазонных полосовых фильтров (ДПФ) поступает на "классический" кольцевой диодный смеситель . На другой вход смесителя подается сигнал с генератора плавного диапазона (ГПД). С выхода смесителя сигнал промежу-точной частоты (ПЧ) поступает на первый каскад усилителя промежуточной частоты (УПЧ), выполненный на транзисторах VT1 и VT2. Нагрузкой этого каскада является кварцевый фильтр ZQ1, обеспечивающий основную селективность приемника по соседнему каналу. Отфильтрованный сигнал усиливается еще одним каскадом УПЧ на транзисторах VT3 и VT4, который также нагружен на кварцевый фильтр (ZQ2), который является "подчисточным". С выхода этого фильтра сигнал поступает на третий каскад УПЧ на транзисторах VT5 и VT6, а с его выхода - на второй диодный кольцевой смеситель, на который также подается сигнал опорного кварцевого генератора (ОГ), выполненного на транзисторе VT10. На выходе смесителя выделяется сигнал звуковой частоты, который через нормально замкнутые релейные контакты К2.1 поступает на усилитель низкой частоты (УНЧ) на микросхеме LM386. Эта широ-ко распространенная микросхема имеет хорошие усилительные и шумовые характеристики. Выход УНЧ нагружен на переменный резистор R32, который обеспечивает регулировку громкости. ВА1 - компьютерная гарнитура, в которой "динамики" сопротивлением 2x32 Ом включены параллельно. На элементах С28, VD9, VD10, R26, С24 и VT9 выполнена схема автоматической регулировки усиления (АРУ), предложенная Сергеем Беленецким, US5MSQ, в приемнике "Малыш" (спасибо, Сергей!). Несмотря на свою простоту, АРУ довольно эффективна и позволяет весьма комфортно принимать сигналы с уровнями от эфирных шумов до 9 +40 дБ по S-метру.
АРУ начинает срабатывать при силе сигналов 7 баллов и больше. "Давить" более слабые сигналы, на мой взгляд, смысла нет. При выбранном пороге работы АРУ слабые станции легко "читаются" на фоне гораздо более мощных. В S-метре используется усилитель постоянного тока на транзисторе VT11, нагруженный на микроамперметр с током максимального отклонения 200 мкА.
Прежде чем перейти к рассмотрению работы тракта в режиме передачи, отмечу, что все три каскада УПЧ являются реверсивными. Идея реверсивного усилителя была почерпнута из схемы, размещенной на сайте американского радиолюбителя SteVen Weber, KD1JV (http:// kd1jv.). В режиме передачи (ТХ) при нажатии на педаль срабатывают реле К1 - КЗ. Релейными контактами К1.1 реверсируется направление прохождения сигнала в каскадах УПЧ, а через контакты К3.1 напряжение питания подается на микрофонный усилитель (при этом снимается напряжение питания с УНЧ и УПТ S-метра). Сигнал с микрофонного усилителя на транзисторах VT7 и VT8 через релейные контакты К2.1 поступает на кольцевой смеситель на диодах VD5 - VD8, в режиме передачи играющий роль балансного модулятора. С выхода модулятора двухполосный сигнал с подавленной несущей (DSB) проходит через все три каскада УПЧ в "обратном" направлении (т. е. от балансного модулятора к смесителю на диодах VD1 - VD4), и в процессе прохождения сигнала кварцевыми фильтрами ZQ1 и ZQ2 выделяется требуемая боковая полоса, т. е. формируется SSB-сигнал. Дальнейший перенос однополосного сигнала ПЧ на рабочую частоту, находящуюся в одном из любительских KB диапазонов, происходит в кольцевом смесителе на диодах VD1 - VD4, после которого сигнал подается на диапазонные полосовые фильтры. В режимах приема и передачи используется один комплект 50-омных ДПФ. Подавление несущей в балансном модуляторе регулируется подстроечным резистором R20. Возможно (подчеркиваю - возможно!), для более глубокого подавления придется параллельно какому-нибудь из диодов модулятора подключить подстроечный конденсатор емкостью 4 - 25 пФ. Иногда такие конденсаторы на схемах изображают пунктиром. Но при хорошо подобранных диодах необходимости в конденсаторе нет, поэтому на схеме он не изображен.
Несколько слов о самих реверсивных каскадах. Режимы транзисторов устанавливаются автоматически, и при исправных деталях каскады в настройке не нуждаются. При напряжении питания +6 В коэффициент усиления такого каскада составляет 17 - 18дБ, при +9В - +20 дБ, при 12 В - +23 - 24 дБ. При этом за счет глубоких обратных связей каскад работает очень устойчиво, а коэффициент усиления слабо зависит от типа применяемых транзисторов. Первые эксперименты проводились на парах транзисторов КТ315 и КТ361, но, руководствуясь желанием получить в режиме приема максимально достижимые шумовые характеристики тракта, я отдал предпочтение транзисторам КТ368. Транзисторы структуры р-п-р, работающие в режиме передачи, могут быть любыми из серий КТ363, КТ326, КТ3107.
Как видно из схемы, все три каскада идентичны, за исключением каскада на VT5 и VT6, в котором отсутствует конденсатор в эмиттерной цепи транзистора VT5. Это сделано для снижения коэффициента усиления в режиме передачи, что позволяет избежать перегрузки последующих каскадов и смесителя.
Транзистор КП501 в системе АРУ можно заменить импортным 2N7000. В качестве индикатора S-метра хорошо подходит измерительная головка от старого кассетного магнитофона.
Диоды для смесителей желательно подобрать по прямому сопротивлению. Безусловно, наилучшие результаты получатся в том случае, если применить диоды, специально разработанные для смесителей и подобранные в "четверки" (например, КД922АГ). Однако если этих диодов нет, не надо отчаиваться - в схеме будут неплохо работать даже КД521.
Широкополосные трансформаторы Т1, Т2 и Т8 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН тремя слегка скрученными проводами (2-3 скрутки на сантиметр) ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков. Трансформатор балансного модулятора Т7 должен иметь достаточную индуктивность для сигналов звуковых частот, поэтому его нужно намотать на кольце К10x6x5 проницаемостью не ниже 1000HH такой же скруткой проводов (в один слой) до заполнения кольца. Особое внимание следует обратить на симметричность выполнения обмоток всех трансформаторов - от этого зависит качество балансировки смесителей.
Трансформаторы ТЗ - Т6 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН двойным скрученным (2-3 скрутки на сантиметр) проводом ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков, включенных согласно-последо-вательно (начало одной обмотки соединяется с концом другой, образуя средний вывод). Катушка L1, используемая для подстройки частоты ОГ, имеет 25 витков провода ПЭЛ-0,1, намотанного на каркасе 05 мм с подстроенным сердечником от СБ9 с резьбой МЗ, и помещена в экран. Реле К1 - КЗ желательно применить малогабаритные (например, РЭС49 или РЭК23). О кварцевых фильтрах: в авторском варианте 1-й ФОС - восьмикристальный, 2-й ("подчисточный") - четырехкристальный. Но это не требование, а скорее, пожелание. В принципе, в схеме можно применять любые фильтры и на любую частоту, доступные радиолюбителю. Это еще одно достоинство примененных реверсивных каскадов, в которых отсутствуют резонансные цепи, требующие настройки. Однако следует иметь в виду, что поскольку в УПЧ используется не самая оптимальная, но зато очень простая и доступная начинающему радиолюбителю простейшая автотрансформаторная схема согласования между усилителями и кварцевыми фильтрами, то единственное требование к кварцевым фильтрам заключается в величине их входного и выходного сопротивлений, которая должна быть в пределах 220 - 330 Ом. Как правило, кварцевые фильтры, изготовленные на распространенных ПАЛовских кварцевых резонаторах на частоту 8,867 МГц, удовлетворяют этому требованию.
С основной платой можно использовать любой ГПД или синтезатор частоты, работающий на соответствующих частотах и формирующий требуемое напряжение выходного сигнала. Не следует подавать на смеситель напряжение более 1,2 - 1,5 В, т. к. это приведет к росту собственных шумов тракта. Тем не менее, если используемый ГПД имеет достаточную мощность, то в первом смесителе можно установить по два последовательно включенных диода в плече. В этом случае можно ожидать некоторого увеличения динамического диапазона (на несколько децибел) в режиме приема, а также можно увеличить уровень выходного сигнала в режиме передачи - до 200 - 250 мВ вместо 100 - 150 мВ со смесителем, в котором установлено по одному диоду в каждом плече.
Диапазонные полосовые фильтры с входным и выходным сопротивлением 50 Ом можно применять любые - как самодельные, так и промышленные. В авторском варианте используются самодельные ДПФ от трансивера RA3AO.
Особо хочу отметить, что в режиме приема следует подобрать оптимальный уровень сигнала с ОГ, ориентируясь на наилучшее соотношение сигнал/шум на выходе тракта. Уровень выходного сигнала ОГ во многом определяется добротностью кварцевого резонатора ZQ3. Оптимальный уровень можно установить подбором емкости конденсатора С20 в пределах 47 - 100 пФ и/или сопротивления резистора R23 (330 - 750 Ом).
Микрофонный усилитель на транзисторах VT7 и VT8 требуется только при использовании динамического микрофона. Если трансивер будет работать с электретным микрофоном, имеющим ЭДС 100 мВ и более, то достаточно установить только эмиттерный повторитель, изготовив его по любой из известных схем.
Реальную чувствительность тракта подсчитать несложно: потери в ДПФ составляют -6 дБ, потери в смесидБ, коэффициент усиления 1-го УПЧ - +20 дБ, потери в 1-м кварцевом фильтре - -6 дБ, коэффициент усиления 2-го УПЧ - +20 дБ, потери во 2-м кварцевом фильтре - -4 дБ, коэффициент усиления 3-го УПЧ - +20 дБ. Итого, до входа детектора (перед конденсатором С11) коэффициент усиления приемного тракта составляет +38 дБ или 80 раз по напряжению. Со входа детектора реальная измеренная чувствительность (при соотношении сигнал/шум 10 дБ) составляет 10 мкВ. Таким образом, предельно достижимая чувствительность с антенного входа может достигать 0,125 мкВ. Это теоретически, а реально - не хуже 0,35 мкВ. И все это благодаря малошумящему УПЧ с его относительно небольшим усилением.
На низких (читай - звуковых) частотах гораздо легче получить большой коэффициент усиления (как, например, в приемниках прямого преобразования). Коэффициент усиления УНЧ на микросхеме LM368 может достигать свыше 70 дБ! Для того чтобы убрать излишек усиления ("белый шум"), установлен подстроенный резистор R29.
Если на базе этого тракта предполагается изготовить трансивер на НЧ диапазоны, то напряжение питания реверсивных каскадов желательно уменьшить до +6 В, заменив интегральный стабилизатор 78L09 на 78L06.
Регулировку усиления по ВЧ лучше всего выполнить на основе плавного аттенюатора (рис.2), который устанавливается перед ДПФ.
Основной тракт можно дополнить телеграфным генератором (рис.3). Его схема практически не отличается от схемы ОГ (за исключением элемента подстройки частоты - вместо индуктивности используется конденсатор, позволяющий "утянуть" частоту генератора "вверх").

C основным приемо-передающим трактом используется транзисторный усилитель мощности (рис.4) с выходной мощностью около 30 Вт.

В авторском варианте усилитель выполнен "на пятачках" на плате из фольгированного стеклотекстолита, установленной на радиаторе, на котором закреплены транзисторы VT2 (непосредственно) и VT3-VT5 (через изоляционные прокладки). Для повышения устойчивости работы каскадов на транзисторах IRF510 на вывод затвора каждого транзистора надето кольцо К7-4-2 М1000НН.
Настройку усилителя начинают с установки токов покоя транзисторов(без подачи ВЧ сигнала): VT1 - 34 mA (подбором сопротивления резистора R4), VT2 - 150 mA (подбором сопротивления резистора R9), VT3 - 250 mA (подбором сопротивления резистора R13), VT4 и VT5 - примерно по 200 mA (c помощью подстроечных резисторов R16 и R17).Конденсатор С6 - очень важный элемент схемы, во многом определяющий сквозную АЧХ усилителя мощности. Настройку АЧХ следует начинать с диапазона 28 Мгц подбором емкости конденсатора С6, подав на вход усилителя ВЧ напряжение 100-120 мВэфф. При этом выход усилителя должен быть подключен к 50-омному эквиваленту антенны через предварительно настроенные фильтры нижних частот. Допустим что выходное напряжение в диапазоне 28 Мгц составило 40 В эфф. Далее переходим к более низкочастотным диапазонам и подбором емкости конденсатора С6 добиваемся выходного напряжения около 40 В эфф.. А можно сразу установить С6 емкость 1000 пФ и сравнить выходную мощность в диапазонах 3,6 и 28 Мгц. Возможно, усилитель будет иметь вполне "приличную" АЧХ. Если же выровнять АЧХ подбором емкости конденсатора С6 не удается, придется установить параллельно первичным обмоткам трансформаторов Т2 и Т3 конденсаторы (на схеме отсутствуют, т. к. необходимости в них может и не быть) емкостью 30-50 пФ.
В заключении отмечу, что за год работы на трансивере, выполненном на базе приведенных схем, сработано свыше 160 стран по списку DXCC и получено более 210 дипломов по программе EPC.

Игорь Августовский (RV3LE)

Монтажная схема основной платы TRX «Клопик» (плата 2.0).

На данную плату возможна установка собранных кварцевых фильтров «КФ-8м» и «ПКФ-4м».


А.Тарасов (UT2FW)
Радиолюбитель. KB и УКВ 10/97

Каких-либо уникальных решений этот узел не имеет, схемотехника - вариации на тему TRX RA3AO и Урал-84М. Главные требования при выборе конструкции - повторяемость, простота при сохранении максимально достижимых характеристик. Использована доступная на сегодняшний день элементная база. Многие решения можно подвергнуть критике - творческий процесс бесконечен, за постоянными переделками и усовершенствованиями сложно увидеть законченный вариант, но нужно было остановиться и изготовить промышленным способом печатные платы.

Изначально трансивер задумывался для работы SSB как основным видом излучения. Для сужения полосы пропускания введен четырехкристальный подчисточный фильтр с регулировкой полосы. Для любителей узкополосного приема можно рекомендовать, как это делается в фирменных TRX, идти на дополнительные затраты по изготовлению или приобретению высококачественных узкополосных кварцевых фильтров. Как правило, самодельный лестничный фильтр из кварцев, наиболее популярных в среде радиолюбителей, имеет недостаточные характеристики для качественного узкополосного приема. Для этих целей нужно делать фильтр по дифференциально-мостовой схеме или использовать кварцы очень высокого качества. Можно купить комплект фирменных фильтров, хотя по стоимости они будут сопоставимы со всеми остальными затратами на трансивер.

Вариант "преобразования вверх" не рассматривался из-за отсутствия достаточно простой и отработанной схемы синтезатора частоты. Этот вариант построения имеет смысл в устройстве с непрерывным перекрытием от 1 до 30 МГц, а для работы в девяти узких любительских диапазонах приемлемую избирательность можно обеспечить более дешевой ПЧ 5...9 МГц.

Многие испытывают проблемы с подавлением несущей не менее чем на 40 дБ при формировании SSB сигнала непосредственно на ПЧ. Мне кажется, что эта проблема больше надумана, нежели она есть на самом деле. Практически во всех дешевых фирменных трансиверах формирование происходит на ПЧ 8...9 МГц. Думаю, вряд ли кто-то услышит неподавленную несущую например в TRX FT840 или TS50. Качество узла формирователя SSB сигнала зависит от грамотности и настойчивости изготовителя. Отличные характеристики можно получить используя простейший модулятор на варикапах, как это сделано в TRX Урал-84. Только не нужно стремиться получать от модулятора уровни, достаточные для раскачки выходного каскада - тогда подавить несущую не удается.

При отработке основной платы использовались элементы, которые можно найти практически на любом радиорынке. Что-то особенное, с позолоченными выводами, с индексом ВП исключалось сразу же. Например, требуемый коэффициент усиления можно получить от двух каскадов на импортных BF980. Но они не всегда бывают в продаже, поэтому использованы отечественные аналоги КП327, хотя они и имеют худшие параметры. В плате отсутствуют какие-либо незаменимые детали. Чувствительность со входа платы, которой можно достичь без тщательной отладки индивидуально каждого каскада - 0,2...0,3 мкВ, при подборе деталей и тщательной настройке - 0,08...0,1 мкВ. Один из трансиверов с такой основной платой и синтезатором, описанным в , имел при отключенном УВЧ чувствительность 0,4 мкВ и двухсигнальную избирательность при подаче двух сигналов с разносом 8 кГц, 95 дБ. Измерения проведены UT5TC. Это не предельные величины, т.к. в трансивере были применены входные полосовые фильтры на каркасах диаметром 6 мм с довольно высоким затуханием и обычные высокочастотные диоды в смесителе. Хотя, как показывает опыт, в трансиверах, которые предназначены для обычной повседневной работы в эфире, не следует гнаться за цифрами динамического диапазона. Значение 80 дБ устраивает большинство радиолюбителей. Применение супердинамичного приемника имеет смысл только в TRX для очных соревнований и при условии, что все участники работают линейными сигналами. Проблемы с помехами от передатчика соседа чаще возникают не от низкого динамического диапазона приемника, а от того, что горе-радиолюбитель, пытаясь всех перекричать, настраивает свой передатчик по принципу - все стрелки вправо до упора.

По наблюдениям US5MIS, который не один год крутил ручки FT840, "Прибоя" и RA3AO, на слух вся эта техника звучит почти одинаково. Но когда были проведены сравнительные измерения по одинаковой методике, то TRX RA3AO реагировал на уровень 1 В по соседнему каналу, "Прибой" - на 0,8 В, а FT840 - на 0,5 В. Но удобство работы, стабильность и сервис взяли свое - оставлен FT840. Описываю все это не для того, чтобы показать какая хорошая у нас самодельная (или полусамодельная, как "Прибой")техника, а для того, чтобы стало ясно, что погоня за динамическим диапазоном имеет смысл до определенного уровня и под конкретные условия. Думаю, что многие счастливые обладатели супердинамичных RA3AO с удовольствием бы обменяли их на "хиленькие" по динамике FT840. Хочу коснуться еще одного стереотипа, распространенного среди наших радиолюбителей. Это убеждение, что синтезатор "шумит". После появления на свет ковельских синтезаторов ни один из моих трансиверов не был с ГПД, только и только синтезатор. Выше я описал чувствительность, достижимую со входа основной платы при использовании в качестве ГПД синтезаторов. О каком шуме может идти речь, когда ни с помощью Г4-102А, ни с Г4-158, ни с Г4-18 не удается измерить предельную чувствительность. Пришлось изготовить отдельный кварцевый генератор, запитать его от батареек, экранировать двойным экраном, и при помощи анттенюатора до 136 дБ оценить чувствительность платы.

Перейдем к описанию собственно основной платы, которая включает в себя:

  • отключаемый УВЧ, обратимый смеситель, пассивный диплексор, согласующий обратимый каскад на полевом транзисторе, основной кварцевый фильтр ;
  • линейку УПЧ, опорный генератор, детектор ;
  • УНЧ и узел АРУ .

Рассмотрим принципиальную схему подробно.

Усилитель высокой частоты (VT5) - с цепью отрицательной обратной связи Х-типа . Возможные параметры такого типа усилителей колеблются в пределах:

  • IР13 - +(21...46)дБм;
  • КРI - -7...+12дБм;
  • Кус - 2...12дБ;
  • Кш -2,2...4,ОдБ.

Проще говоря, УВЧ не перегружается на 40 м даже вечером, когда очень высок уровень помех. Предельная чувствительность такова, что позволяет слышать шум эфира на 28 МГц даже в сельской местности. Один из лучших транзисторов для такого усилителя - КТ939А. В плату был заложен КТ606А как более дешевый и распространенный. Не нужно сильно переживать, что УВЧ ухудшает динамический диапазон RX (снова я о "динамике", грешен, сам когда-то увлекался предельными цифрами). Во-первых, УВЧ - отключаемый, его можно всегда выключить. Во-вторых, включение его обычно требуется только на самых тихих диапазонах во время слабого прохождения, когда все станции слышны с небольшим уровнем, и вряд ли какая-либо из станций перегрузит этот каскад. Ну а в-третьих, "не так страшен черт, как его малюют". Практически во всех промышленных РПУ, например в Р399А, используются УВЧ, причем неотключаемые.

Настройка этого каскада зависит от потребностей пользователя. В зависимости от типа транзистора и его режима можно обеспечить или максимально возможную чувствительность, или минимальное воздействие этого каскада на верхнюю границу динамического диапазона.

О смесителе я писал в предыдущей статье , его схемотехника заимствована из . Основные преимущества этого варианта - обратимость и достаточно большой динамический диапазон (Dбл - до 140 дБ) при небольшом уровне гетеродина. Конечно, по количеству деталей он сложнее и дороже обычно применяемых смесителей. Но не нужно забывать, что этот узел определяет качество работы всего приемника, и экономия на нем бессмысленна.

От тщательности настройки смесителя зависит и то, как приемная часть будет воспринимать эфир, что можно будет там услышать, и то, сколько "мусора" будет выдано на передачу, насколько сложными придется делать полосовые фильтры, чтобы была возможность спокойно работать без Т VI. Часть делителя (D1) пришлось установить непосредственно у смесителя, дабы обеспечить противофазность сигналов на входе плеч VT1, VT2 и VT3, VT4. Это важнейшее требование со стороны гетеродина. Если у вас используется обычный гетеродин, противофазные сигналы нужно формировать другим способом. Здесь же использован вариант простейшей стыковки с ковельским синтезатором.

Применение триггера вызвано еще и тем, что на его выходе сигнал максимально приближен к меандру. При стыковке с обычным ГПД нужно использовать другие микросхемы ЭСЛ, например типов ЛМ, ТЛ и т.д. Главное требование - на входе транзисторных ключей должны быть одинаковые по уровню, но идеально противофазные высокочастотные сигналы. В ключах применены транзисторы КТ368 и КТ363, рекомендованные в . Экспериментов с другими транзисторами не проводилось. Смеситель работоспособен с различными типами диодов. Можно предположить, что наилучшими будут диоды Шотnки. Переход с КД922 на КД512, КД514 сколько-нибудь заметного ухудшения параметров не вызывает (при условии подбора диодов). По-моему, главное преимущество диодов КД922 перед всеми остальными заключается в том, что они поставляются подобранными и упакованными в индивидуальную тару (поэтому перемешивание исключается). С тщательно подобранными КД503 смеситель работает практически так же, как и с КД922.

Очень важна симметричность и качество изготовления трансформатора Т1. Входные сопротивления со входа Т1:
1,9МГц-7500м,
3,5МГц-5600м,
7 МГц-3000м,
10 МГц-4000м,
14МГц-3900м,
18МГц-3000м,
21МГц-1500м,
24МГц-1200м,
28МГц-1300м.

Это нужно учитывать при согласовании с ДПФ. Можно попробовать различные коэффициенты трансформации, для того чтобы входное сопротивление было ближе к 50 Ом, но оказалось проще изменять катушки связи на ДПФ под конкретное сопротивление основной платы. Для согласования с последующими каскадами применен обычный диплексор. На рис. 1 приведены данные диплексора для ПЧ=9 МГц. В принципе, можно этот узел и не устанавливать. Неплохое согласование можно получить за счет подбора режима VT15 КП903, однако применение диплексора позволяет получить максимально возможную чувствительность, и если и не избавиться полностью от пораженных точек, то значительно снизить их уровень. Активный двунаправленный каскад VT15 после смесителя должен иметь минимально возможный коэффициент шума, не ухудшать динамический диапазон смесителя и компенсировать затухание, вносимое смесителем, ДПФами и диплексором. Наиболее распространенный и качественный для этого каскада транзистор - КП903А. Можно применять КП307, КП303, КП302 (с максимальным значением крутизны), КП601. После VT15 сигнал через трансформатор ТЗ поступает на кварцевый фильтр ZQ1. Резистор R26 служит для согласования, он может и не потребоваться. Эту процедуру можно произвести и с помощью R22. В качестве ZQ1 применен лестничный шестикристальный кварцевый фильтр (рис.4). Для сужения полосы пропускания в режиме CW параллельно крайним резонаторам с помощью реле включаются дополнительные конденсаторы. Такой CW фильтр, конечно же, нельзя назвать качественным. Для любителей узкополосного CW требуется применение отдельного кварцевого фильтра.

Почему применен шестикристальный фильтр? Обычно практикуется восемь и даже десять пластин. Но не надо забывать, что этот фильтр используется и на передачу, а для приемлемого качества SSB требуется полоса около 3 кГц. Но для приема в условиях перегруженных любительских диапазонов достаточно полосы 2,2...2,4 кГц. Поэтому был выбран Компромисс: полоса пропускания по уровню -3 дБ - 2,3...2,4 кГц при меньшей прямоугольности. В итоге имеем вполне качественный прием и хороший сигнал на передачу (чего нельзя сказать о сигналах, которые сформированы при помощи восьмикристальных фильтров). Еще одно преимущество перед восьмикристальным фильтром - меньшее затухание в полосе прозрачности. Тем самым обеспечивается достижение предельной чувствительности всего тракта усиления.


Puc.4

Для увеличения затухания вне полосы прозрачности в тракте ПЧ применен подчисточный четырехкристальный фильтр (рис.5). Общее затухание обоих фильтров превышает 100дБ. На рис.4, 5 даны усредненные данные кварцевых лестничных фильтров из пластин в корпусе Б1, которые чаще всего встречаются. Подчисточный фильтр обрезает шумы, вносимые трактом УПЧ, и за счет примененной плавной регулировки полосы пропускания позволяет немного отстраиваться от помех в SSB режиме. Не следует, конечно, на такой вариант плавного изменения полосы пропускания возлагать большие надежды. Во-первых, сужение происходит только с одной стороны ската фильтра, а во-вторых, больше 40 дБ получить от четырехкристального ZQ проблематично. Но усложнение настолько просто и дешево, что отказываться от такого, хотя и небольшого, сервиса нет смысла. Подчисточный фильтр следует рассчитывать на полосу пропускания 2,4 кГц. При плавном сужении полосы варикапами верхний скат приближается к нижнему в зависимости от добротности кварцев до полосы 600...700 Гц. Но за счет невысокой прямоугольности фильтра даже при такой полосе пропускания возможен прием SSB станций. Этот режим часто используется в диапазонах 160, 80 и 40 м. Вместо указанных варикапов можно использовать по несколько включенных параллельно KB 119, KB 139.


Puc.5

Кварцевый фильтр ZQ1 согласуется с трактом УПЧ (рис.2) через резонансный контур L3 с катушкой связи. Если сопротивление фильтра заметно отличается от 300 Ом, требуется подбор числа витков катушки связи. Транзистор VT7 включается при работе на передачу. По второму затвору происходит регулировка выходной мощности трансивера.

Линейка УПЧ собрана на транзисторах КП327. Схемотехника заимствована у RA3AO. На мой взгляд, это один из лучших вариантов построения такого тракта. Здесь можно использовать двухзатворные полевые транзисторы и других типов. Наилучшими оказались BF980. Нашей промышленности не удалось скопировать характеристики этого транзистора, КП327 в сравнении с BF980 хуже и по Кш, и по Кус, хотя Кус транзисторов не имеет решающего значения.

Для VT8 нужно выбрать транзистор с минимальным шумом. Обычно лучшие экземляры попадаются среди КП327А. VT9, VT10, VT11 можно заменить и на КП350. Преимущество КП327 перед КП350 и КП306 - в лучшем значении Кш, устойчивости к статике, и "золотоискатели" на них никак не реагируют, т.к. транзисторы не содержат драгметаллов. Для регулировки усиления использовано свойство насыщения проходных характеристик полевых транзисторов по первому затвору при малом напряжении на втором . Излишнее усиление убирается путем шунтирования контуров ПЧ резисторами R38 и R46.

Не следует увеличивать ВЧ уровни по первым затворам транзисторов, чтобы мгновенное значение напряжения не превышало порог открывания стабилитронов защиты от статики (15 В). В противном случае стабилитроны открываются и блокируют работу АРУ - это касается двух последних каскадов УПЧ. Детектор и опорный генератор, предварительный УНЧ и АРУ - аналогичны .

Транзистор VT13 (рис.3) может использоваться для включения-выключения цепи АРУ и для блокировки АРУ во время передачи, чтобы не искажались показания S-метра, который в этом режиме"показывает выходную мощность передатчика. В качестве VT 13 можно использовать как полевой, так и биполярный транзистор. У биполярного транзистора сопротивление коллектор-эмиттер ниже, поэтому он лучше шунтирует цепь АРУ. Схема усилителя выпрямителя АРУ аналогична . Изменены временные характеристики "быстрой" цепочки, емкость С74 потребовалось увеличить до 0,047...0,1 мкФ.

В качестве оконечного УНЧ использована микросхема К174УН14, в типовом включении полоса пропускания сверху определяется цепочкой С69, R80; коэффициент усиления можно регулировать резистором R81. Выход УНЧ можно нагружать на динамик или через делитель R84, R85 на головные телефоны.

Детали

Катушки L1...L6 намотаны на каркасах диаметром 5 мм, с подстроечным сердечником СЦР-1. L3...L6 содержат по 25...30 витков провода ПЭВО,2. LCB - 3...4 витка у "холодного" конца L3. L9, L10 - дроссели с индуктивностью 50... 100 мкГн. L11 -дроссель 0...30 мкГн. Трансформаторы Т1...ТЗ намотаны проводом ПЭВО,16 на кольцах К 10х6х3 из феррита 1000 нн. Т1 содержит 10 витков скрутки в три провода, Т3 - 9 витков скрутки в два провода, Т2 намотан скруткой из трех проводов: обмотка I - 3 витка, II - 10 витков, III - 10 витков.

Поддавшись стремлению обеспечить "одноплатность" всей конструкции трансивера, решили на основной плате развести и опорный гетеродин. Это, конечно же, усложнило ситуацию с "пораженными точками". Некоторых из них можно было бы избежать совсем, если бы опорный гетеродин был выполнен в отдельном экранированном отсеке. При удачной ПЧ количество точек не превышает 3...5 на все девять диапазонов. Возможно от них избавиться практически совсем, если повозиться с дополнительными заземлениями шины питания микросхемы и металлизации вокруг этого узла.

Настройка платы - типовая, она неоднократно описана в радиолюбительской литературе.

Номиналы элементовR1 и С1 зависят от того, какой узел использован в качестве гетеродина. Если это ковельский синтезатор, R1=470...680м, C может иметь номинал от 68 пФ до 10 нФ. Качество согласования заметно на слух по минимальному количеству "шумовых точек" от синтезатора. Элементы LI, L2, С7, С9 настраивают в резонанс на частоту ПЧ. Резистор R19 может иметь номинал 50...200 Ом.

Качество согласования этого узла определяет общее уменьшение уровня "пораженок" и небольшое увеличение чувствительности. Согласования ZQ1 добиваются резисторами R22, R26, Кф и подбором количества витков LCB. Подчисточный фильтр ZQ2 согласуют резисторами R52 и. R54. Общее усиление тракта ПЧ можно подобрать при помощи R28, R38, R46. Резисторы R39, R47, R53, R60 влияют на Кус и определяют качество работы АРУ покаскадно. Об изготовлении трансформаторов. Были опробованы ферриты проницаемостью 400...2000, диаметр колец - 7...12 мм, скрутка проводов и без скрутки. Вывод - все работает. Главные требования - аккуратность изготовления, отсутствие замыкания обмотки на феррит и обязательная симметрия плеч.

Диоды в смесителе следует подобрать хотя бы по сопротивлению открытого перехода и емкости. Транзисторы VT1, VT2; VT3, VT4 необходимо подобрать как одинаковые комплементарные пары. В эмиттере VT5 номиналы R и С в цепочке не указаны. Они зависят от типа транзистора. Для КТ606 R - в пределах 68... 120 Ом, а С слеует настроить по максимуму усиления на 28 МГц (обычно 1нФ). С помощью R29 можно подобрать ток через транзистор, например по максимальной чувствительности. Транзисторы КП327 припаиваются снизу платы. Сверху платы, со стороны установки деталей, оставлена фольга, отверстия раззенкованы. Катушки закрыты экранами.

По вопросам приобретения печатных плат или настроенных узлов можно обращаться к автору, частота - 3,700 после 23.00 MSK.

Литература:

  1. Радиолюбитель. - 1995. NN11,12.
  2. Радиолюбитель. - 1996. - NN3...5.
  3. Кухарук. Синтезатор частоты// Радиолюбитель. - 1994. -Nl.
  4. Дроздов. Любительские KB трансиверы. - М.: Радио и связь, 1988.
  5. Першин. Трансивер "Урал-84". "30 и 31 выставки радиолюбителей".
  6. Богданович. Радиоприемные устройства с большим динамическим диапазоном. - М.: Радио и связь, 1984.
  7. Мясников. Одноплатный универсальный тракт /Радио. - 1990. - N8.
  8. Тарасов. Узлы KB трансивера// Радиолюбитель.-1995.-NN11,12.
  9. Ред Э. Справочное пособие па высокочастотной схемотехнике. Изд. Мир, 1990.
Подробности Создано: 15 сентября 2008 Обновлено: 11 мая 2015 Просмотров: 25347

КВ трансивер НТ981М

В радиолюбительских кругах (в частности, в Интернете) давно дискутируется вопрос об отсутствии нового "народного" трансивера. В большей или меньшей степени на такое название может претендовать предлагаемый вниманию читателей трансивер, названный автором "НТ981М". Малогабаритный аппарат среднего класса с синтезатором частоты, высокими электрическими параметрами и рядом сервисных удобств относительно несложный и доступный для изготовления в домашних условиях. Такова краткая характеристика этого трансивера. Его высокие селективные и динамические характеристики получены благодаря использованию лучшей профессиональной и любительской схемотехники.

Коллеги! Прошу не подходить к данной разработке с позиций высоких профессиональных мерок. Эта конструкция сделана радиолюбителем и для радиолюбителей. Не ищите здесь каких-то "откровений" - все узлы трансивера (кроме синтезатора, пожалуй) давно известны. Согласитесь, что в наше время трудно предложить какое-либо новое схемотехническое решение, да и зачем? Так что рассматривайте этот трансивер не как "премьеру", а как "попурри" на тему старых, добрых мелодий...

Трансивер позволяет работать телеграфом (CW), телефоном (SSB) и телетайпом (RTTY) на любом из девяти любительских KB диапазонов. Чувствительность приемного тракта: при полосе пропускания 2,7 кГц и отношении сигнал/шум 10 дБ - не хуже 0,22 мкВ; а при полосе пропускания 0,3 кГц и отношении сигнал/шум 10 дБ - не хуже 0,07 мкВ.

Динамический диапазон по интермодуляции (измерен по методике, предложенной RA3AO) - более 95 дБ. Селективность по соседнему каналу при расстройке на +6 и -6 кГц - не менее 92 дБ. Подавление зеркального канала приема - не менее 80 дБ, побочных каналов приема - не менее 65 дБ. Коэффициент прямоугольности ФОС с полосой пропускания 2,7 кГц - не хуже 1,7 (по уровням -6 и -60 дБ). Минимальный шаг перестройки частоты трансивера - 6 Гц. Выходная мощность тракта ЗЧ на нагрузке 8 Ом - 1 Вт, а передатчика на нагрузке 50 Ом на всех диапазонах - 8 Вт. Время переключения с приема на передачу и обратно - не более 25 мс. Максимальный потребляемый ток от источника питания напряжением 13,8 В в режиме приема - 0,45 А, в режиме передачи - 2 А. Габариты трансивера - 270х280х85 мм. Масса - 2,8 кг.

Следует заметить, что аппаратура, применявшаяся при измерениях динамического диапазона, не позволяла регистрировать значения более 95 дБ, поэтому приведенное выше значение - это не характеристика трансивера как такового. Его динамический диапазон реально может быть лучше.

Трансивер допускает подключение внешнего УКВ трансвертера, для чего в синтезаторе предусмотрены два дополнительных диапазона. Поправка на "промежуточную частоту" может быть запрограммирована пользователем под конкретный трансвертер. При этом на индикаторе трансивера будет отображаться реальная частота приема и передачи сигнала в УКВ диапазоне.

Аппарат выполнен по схеме супергетеродина с одним преобразованием частоты. Традиционно низкое значение промежуточной частоты 5 МГц выбрано по экономическим соображениям. Для аппарата, предназначенного исключительно для работы в узких любительских диапазонах и не требующего сплошного перекрытия всего KB диапазона, такое построение получается проще и дешевле. Мы ведь хотим сделать трансивер для работы в эфире, а не для того, чтобы просто заниматься конструированием, получая при этом удовольствие от самого "процесса созидания". Хотя в жизни встречается и такое хобби.

Из тех же соображений основные и трудоемкие узлы трансивера - диапазонные полосовые фильтры, фильтр основной селекции, узел A3 и узел А1 - использованы автором как единый реверсивный тракт, работающий и на прием, и на передачу.

Функциональная схема трансивера приведена на рис. 1. Аппарат состоит из восьми конструктивно законченных узлов А1-А8, выделенных на схеме штрихпунктирными линиями.

Узел А1 содержит антенный коммутатор, аттенюатор приемника и мостовой рефлектометр. При приеме сигнал с антенного гнезда через измеритель КСВ (1) и фильтр нижних частот (2) поступает на антенный коммутатор (3). В трансивере он выполнен на pin-диодах. Далее сигнал поступает на двухзвенный аттенюатор (4), который позволяет ввести в тракт приема затухание величиной в 12, 24 или 36 дБ.

Через второй коммутатор (5), также выполненный на pin-диодах, и один из диапазонных полосовых фильтров (6) узла А2 принимаемый сигнал поступает в узел A3. Реверсивный усилитель радиочастоты (7), выполненный на мощном полевом транзисторе, обеспечивает усиление около 12 дБ, большой динамический диапазон и превосходные шумовые параметры.

Так как УРЧ сохраняет высокую линейность при больших уровнях входного сигнала, он сделан неотключаемым. Эксплуатация нескольких трансиверов, собранных по этой схеме, подтвердила правильность такого решения: даже на низкочастотных диапазонах в условиях соревнований можно работать с отключенным аттенюатором без признаков блокирования приема.

После УРЧ сигнал поступает на кольцевой двойной балансный смеситель высокого уровня (8). Смеситель выполнен по традиционной схеме на восьми импульсных диодах (по два в плече), но его особенностью является то, что сигнал гетеродина, сформированный триггером, подается в противофазе на средние точки вторичных обмоток трансформаторов. Из-за того что в смесителе применен триггер-делитель на два, сигнал гетеродина должен иметь удвоенную частоту.

Нагрузкой смесителя является первый каскад УПЧ (9), также реверсивный и по схеме напоминающий УРЧ, но с резонансным колебательным контуром, настроенным на промежуточную частоту в стоковой цепи. Так как этот каскад предшествует фильтру основной селекции, его характеристики в большей степени определяют динамический диапазон трансивера.

Фильтр основной селекции (10) - кварцевый восьмикристальный дифференциально-мостовой фильтр. Он имеет полосу пропускания 2,7 кГц (по уровню -6 дБ) и коэффициент прямоугольное™ 1,7 (по уровням -6 и -60 дБ). Затухание фильтра за полосой прозрачности - более 90 дБ.

На этом реверсивный тракт заканчивается. Все последующие узлы работают только на прием или только на передачу.

В узле А4 находятся тракт промежуточной частоты приемника, второй смеситель, предварительный усилитель ЗЧ, телеграфный фильтр НЧ, балансный модулятор передатчика, усилитель DSB и устройство формирования RTTY-сигнала.

Второй УПЧ приемника (22), следующий за фильтром основной селекции, выполнен на двухзатворном полевом транзисторе. С его выхода усиленный сигнал через релейный коммутатор (23) поступает на один из дополнительных кварцевых фильтров либо телефонный (24) с полосой пропускания 2,4 кГц, либо телеграфный (25) с полосой пропускания 300 Гц. Затем через релейный коммутатор (26) и два каскада УПЧ (27 и 28) сигнал поступает на второй смеситель (29). Сюда же подается сигнал второго гетеродина (42). Полученный в результате преобразования сигнал в звуковом диапазоне частот усиливается первым каскадом УНЧ (30) и подается на фильтр нижних частот (31). Последний имеет частоту среза 2,4 кГц и включен в тракт усилителя НЧ постоянно. Затем следует телеграфный фильтр нижних частот (32) с частотой среза 800 Гц, который может быть исключен из тракта коммутатором (33).

Далее низкочастотный сигнал поступает в узел А5, где усиливается каскадом (49) до уровня 1 Вт. Кроме оконечного УНЧ приемника, узел А5 содержит RTTY модем, микрофонный усилитель и систему VOX передатчика.

Каскады (43) и (44) служат для фильтрации и формирования RTTY сигнала в режиме приема. По сути, это так называемый "НАМСОММ" модем, снабженный дополнительным полосовым НЧ фильтром. Вообще-то данное устройство в настоящее время является анахронизмом, тянущимся с тех времен, "когда компьютеры были большими", а радиолюбители работали телетайпом с помощью "РК-86" и "Микро-80". Если ваш компьютер в состоянии запустить программы TrueTTY или WinMIX, модем можно не устанавливать.

Тракт передачи начинается с микрофонного усилителя-ограничителя (48, 47). Блоки (46) - усилитель VOX и (45) - пороговый элемент образуют систему голосового управления. Низкочастотный сигнал с микрофонного усилителя через простейший ФНЧ (39, в узле А4) подается на балансный модулятор (38). Сюда же поступает сигнал второго гетеродина (42). Сформированный DSB-сигнал усиливается усилителем DSB (37), проходит через ограничитель (36) и диодный коммутатор (35) и поступает на фильтр основной селекции (10).

В телеграфном режиме однотональный сигнал формирует кварцевый генератор (40), он же дает двухтональный сигнал (AFSK) в режиме RTTY Эти сигналы, как и DSB-сигнал, подаются на усилитель(37).

Фильтр основной селекции (10) выделяет нужную боковую полосу. Сформированный SSB-сигнал усиливается на 6 дБ реверсивным каскадом (9) и переносится на рабочую частоту преобразователем (8). Через каскад (7), усиленный на 6 дБ, сигнал поступает в узел А2.

Пройдя диапазонный полосовой фильтр (6), радиочастотный сигнал с уровнем напряжения 0,4...0,5 В, действующего на нагрузке 50 Ом, через коммутатор (5) подается в узел А6. Усилитель мощности радиочастоты трехкаскадный (12,13,14), обеспечивает усиление 32 дБ.

Далее через антенный коммутатор (3) сигнал подается на выходной фильтр нижних частот (2) с частотой среза 30 МГц. В трансивере, в целях упрощения конструкции, нет раздельных ФНЧ на каждый диапазон. Но несмотря на это, при выходной мощности до 8 Вт удалось уложиться в допустимые нормы внеполосного излучения. Разумеется, если использовать совместно с трансивером внешний усилитель мощности, на его входе следует установить диапазонные фильтры нижних частот.

После ФНЧ сигнал через измеритель КСВ (1) подводится к антенному разъему.

Сердцем трансивера являются узлы А7 и А8 - синтезатор и микропроцессорный модуль управления. Так как эти узлы являются оригинальными, их мы рассмотрим отдельно и несколько подробнее в конце статьи. Особо нетерпеливым рекомендуем ознакомиться с и или заглянуть на сайт http://www.ax25.donetsk.ua/us2ii . Здесь вы найдете описание предыдущего варианта синтезатора, и описываемый трансивер проектировался именно под него.

Нынешний вариант синтезатора разработан совсем недавно, значительно усовершенствован (автор учел конструктивную критику), претерпел значительную переработку, но идея и общая концепция сохранились. Его основой служит микросхема однокристального PLL-синтезатора фирмы Motorola ( http://www.mot.com ) МС12202 (19). В составе микросхемы - опорный генератор, делитель с переменным коэффициентом деления (ДПКД), делитель с фиксированным коэффициентом деления (ДФКД) и импульсно-фазовый детектор. Вместе с генератором, управляемым напряжением ГУН (16) и ФНЧ (17), он образует петлю ФАПЧ (PLL). При частоте сравнения 8 кГц в этой петле формируется сетка частот с шагом 8 кГц. Для получения мелкого шага используется сдвиг частоты перестраиваемого кварцевого генератора (20) посредством ЦАП (18). В данном синтезаторе ГУН перестраивается в диапазоне 80... 125 МГц. Для получения рабочей частоты частота ГУН делится делителем (15).

Основа узла А8 - однокристальный микроконтроллер серии AYR AT90S2313 (21) фирмы Atmel. Контроллер обрабатывает информацию, поступающую от узла настройки (валкодера) и клавиатуры, выводит на дисплей значение рабочей частоты трансивера и формирует управляющие последовательности сигналов для МС12202 и регистров ЦАП.

Литература:

    Белянский А. Синтезатор частоты. - Радиолюбитель. KB и УКВ, 1998, № 4, 5.

    Белянский А. Модернизация синтезатора частоты. - Радиолюбитель. KB и УКВ, 1999, №5.

{mospagebreak}

Принципиальная схема узла А1 приведена на рис. 2.

В режиме приема сигнал РЧ с вывода 7 (ANT), соединенного с антенным гнездом, через КСВ-метр поступает на ФНЧ, а затем через антенный коммутатор и аттенюатор на вывод 9 (DPF) узла.

Измеритель КСВ выполнен по традиционной схеме на элементах 1Т1, 1VD7, 1VD10, 1С14, 1С13, 1R12, 1R13, 1R15 и представляет собой рефлектометр с токовым трансформатором. Со вторичной обмотки трансформатора снимается пропорциональное току в линии противофазное напряжение, которое прикладывается к диодам 1VD7 и 1VD10. На эти же диоды через резисторы 1R12 и 1R15 с емкостного делителя 1С141С13 синфазно подается часть ВЧ напряжения, действующего в линии. Если нагрузка согласована с линией, напряжение и ток в линии совпадают по фазе. В этом случае к одному из диодов приложена сумма напряжений емкостного делителя и обмотки, а к другому - их разность. Подстройкой конденсатора 1С14 можно эту разность свести к нулю, т. е. сбалансировать измеритель КСВ. При рассогласовании линии с нагрузкой баланс нарушится и разность напряжений не будет равна нулю. Продетектиро-ванное постоянное напряжение контролируется измерительным прибором (S-метром), который подключается к выводу 6 (SWR) узла.

На элементах 1С5, 1С7, 1С9, 1L3, 1L5 выполнен фильтр нижних частот пятого порядка. Частота среза фильтра - 30 МГц.

Антенный коммутатор на pin-диодах 1VD3, 1VD4, 1VD8 и 1VD9 работает так.

В режиме приема вывод 1 узла соединен с общим проводом (определено работой системы коммутации RX/TX трансивера). На выводе 2 узла - постоянное напряжение питания +12 В, которое через открытый транзисторный ключ 1VT1, элементы 1L1 и 1VD5, 1L6 прикладывается к диодам 1VD4 и 1VD8. Диоды открываются протекающим через них током, соединяя вывод 9 узла с выводом 7. При этом диоды 1VD3 и 1VD9 закрыты положительным напряжением, приложенным к их катодам.

В режиме передачи на вывод 1 узла подается напряжение +12 В (ТХ), на вывод 2 - 0 и ток, протекающий по цепи 1L7, 1VD9, 1R14, открывает диод VD9. Ток, протекающий по цепи 1L71VD31L21R4, открывает диод 1VD3. В предыдущей фразе нет опечатки. Дело в том, что в усилителе мощности есть цепь, соединяющая его вход и выход по постоянному току. Через открытый диод 1VD9 вывод 11 (PA IN) узла А1 соединяется с выводом 9 (DPF), т. е. вход усилителя мощности подключается к диапазонным полосовым фильтрам, а выход УМ через вывод 4 (PA OUT) и диод 1VD3 - к антенной цепи (вывод 7 - ANT). Диоды 1VD8 и 1VD4 закрыты напряжением, падающим на резисторах 1R14 и 1R4. При этом аноды диодов имеют нулевой или отрицательный потенциал. Чтобы надежно закрыть диоды 1VD8, 1VD4, необходимо, чтобы напряжение, приложенное к ним, всегда превышало амплитудное значение напряжения коммутируемого сигнала. Для выполнения этого условия применен выпрямитель с удвоением напряжения на элементах 1VD1, 1VD2, 1С1 и 1С2. Выпрямленное напряжение выходного ВЧ сигнала отрицательной полярности, приложенное к анодам диодов 1VD8 и 1VD4, надежно закрывает их при любом уровне выходной мощности.

Коммутатор рассчитан на работу при коммутируемой мощности до 10 Вт. При большей мощности возможен пробой диода 1VD1.

Аттенюатор приемного тракта состоит из двух П-образных звеньев с затуханием 12 дБ (1R16, 1R18, 1R19) и 24 дБ (1R8, 1R9, 1R10). Звенья аттенюатора могут быть включены в тракт или исключены из него переключателями 1SB1 и 1SB2. Комбинируя состояние этих переключателей, можно выбрать затухание 0, 12, 24 и 36 дБ.

Необходимо заметить, что при повседневной работе с трансивером пользоваться аттенюатором практически не приходится. Даже на низкочастотных диапазонах при выключенном аттенюаторе трансивер не блокируется входными сигналами.

Элементы 1VT2, 1R5, 1R7, 1VD6, 1С8, 1L4 служат для управления внешним усилителем мощности. В режиме передачи на вывод 3 узла подается постоянное напряжение (+12 В ТХ), транзистор открывается и соединяет с общим проводом выход трансивера по постоянному току. В режиме приема вывод 3 узла соединен с общим проводом и транзистор закрыт. Если во входной цепи внешнего усилителя мощности установить управляющее реле, можно переводить усилитель в режим передачи без использования дополнительных проводов управления. Аналогично организовано управление и УКВ трансвертерами. О том, как это сделано, будет рассказано позже.

Узел А2 - блок диапазонных полосовых фильтров. Его принципиальная схема показана на рис. 3.

Блок содержит семь трехконтурных фильтров (диапазоны 7, 10, 14, 18, 21, 24 и 28 МГц) и два двухконтурных (диапазоны 1,8 и 3,5 МГц), так как трехконтурные на низких частотах имеют недопустимо большое затухание. Правильно настроенные фильтры имеют затухание в полосе прозрачности не более 1,7 дБ и неравномерность в пределах любительских диапазонов не более 0,1 дБ . Фильтры переключаются с помощью реле, управление которыми осуществляет микросхема 2DD1. На выводы 3 - 6 узла А2 из синтезатора (А7, А8) поступает управляющий четырехразрядный двоичный код выбранного диапазона (табл. 1).

Так как у данного типа микросхем максимальный допустимый ток нагрузки равен 80 мА, оказалось возможным подключить обмотки реле непосредственно к выходам микросхемы.

Узел A3, принципиальная схема которого изображена на рис. 4, содержит усилитель РЧ, кольцевой балансный смеситель высокого уровня и первый каскад УПЧ. Все каскады, входящие в этот узел, реверсивные, т. е. используются как на прием, так и на передачу. На схеме также показан фильтр основной селекции 3ZQ1, принадлежащий узлу A3, однако последний монтируется отдельно, рядом с платой узла. При таком монтаже улучшается развязка между входом и выходом фильтра.

Усилитель РЧ и 1-й УПЧ собраны на мощных полевых транзисторах 3VT2 и 3VT1 соответственно. Оба каскада выполнены по одной схеме с той лишь разницей, что нагрузка в УВЧ - автотрансформатор ЗТ1 со средней точкой, а в УПЧ нагрузка - резонансный контур ЗТ2, ЗС13 -ЗС15.

В режиме приема вывод 2 узла соединен с общим проводом. На вывод 1 постоянно подано напряжение питания +12 В. Ток, протекающий по цепи 3VT3, ЗРЮ, открывает диод 3VD4 и через обмотку трансформатора ЗТ1, который служит стоковой нагрузкой для 3VT2, питание поступает на этот транзистор. Затвор транзистора по переменному току через конденсаторы ЗС8 и ЗС9 соединяется с общим проводом, т. е. транзистор оказывается включенным по схеме с общим затвором.

В режиме передачи напряжение +12 В (ТХ) поступит на вывод 2. Ток, протекающий по цепи 3R6, 3VD1, 3VT2, 3L2, 3R3B, откроет диод 3VD1. В этом случае через конденсатор ЗС6 соединяется с общим проводом сток транзистора. Сигнал от смесителя через трансформатор ЗТ1 и конденсаторы ЗС8, ЗС16 поступает на затвор транзистора 3VT2, который теперь включен как истоковый повторитель.

Принцип, аналогичный описанному, заложен и в управлении каскадом на 3VT1.

Усиление УРЧ при приеме составляет 8...10 дБ, при передаче - 6 дБ (по напряжению). Усиление каскада УПЧ по напряжению составляет 12...15 дБ при приеме и 6 дБ при передаче.

Смеситель выполнен по традиционной схеме на элементах ЗТЗ, 3VD5-3VD12, ЗТ4. По классификации -это кольцевой смеситель для сигналов высокого уровня мощности . Его особенностью является способ подачи сигнала с гетеродина. Сигнал формируется триггером 3DD1.1, включенным как делитель на два (соответственно сигнал с синтезатора должен иметь удвоенную частоту). Противофазные сигналы с его прямого и инверсного выходов подаются на средние точки балансных трансформаторов смесителя. Резисторы 3R14 и 3R15 ограничивают максимальный ток через диоды. Так как использован триггер быстродействующей серии КМОП 74НС(74НСТ), амплитуда выходного сигнала составляет практически полное напряжение питания, что позволило включить в каждое плечо кольца по два диода последовательно. На рис. 5 показана схема фильтра основной селекции трансивера - 3ZQ1.

Фильтр выполнен по дифференциально-мостовой схеме на восьми резонаторах 3ZQ1.1 -3ZQ1.8.

Характеристики фильтра

    Центральная частота, МГц......... 5

    Полоса пропускания, кГц.........2,7

    Коэффициент прямоугольности (по уровням -6 и-60дБ).......... 1,7

    Неравномерность АЧХ в полосе пропускания, дБ, не более........... 2,5

    Подавление за полосой прозрачности, дБ, не менее........90

    Характеристика фильтра симметрична, чего нельзя сказать о фильтрах лестничного типа, выполненных на тех же восьми резонаторах и ставших столь популярными в последние годы.

Литература:

3. Дроздов В. Узлы современного KB трансивера. - Радио, 1985, Ms 9, с. IT-19.
4. Ред Э. Справочное пособие по высокочастотной схемотехнике. - М.: Мир, 1990.

Узел А4 содержит тракт промежуточной частоты приемника, второй смеситель приемника, предварительный усилитель ЗЧ приемника, телеграфный фильтр НЧ, балансный модулятор передатчика, усилитель DSB и устройство формирования RTTY-сигнала. Выполнен он на одной печатной плате, но так как схема его достаточно громоздка, для удобства восприятия она была разбита на три части. На рис. 6 изображен тракт приема (IF RX), на рис. 7 - тракт передачи (IF TX). На общей схеме узла А4 (рис. 8) эти тракты показаны как функциональные блоки.

Рассмотрим приемный тракт трансивера. С выхода фильтра 3ZQ1 (см. рис. 4 в предыдущем номере журнала) сигнал поступает на вход (вывод 13 блока А4) трехкаскадного усилителя промежуточной частоты. Все каскады резонансные и выполнены на двухзатворных полевых транзисторах. В первом каскаде используется малошумящий транзистор фирмы Philips BF998 (4VT7), в остальных - транзисторы КП327Б (4VT8,4VT9). Рабочая точка транзисторов задается подачей на первые затворы небольшого положительного напряжения, снимаемого с цепочки 4VD8,4VD11, 4R32. Ручная регулировка усиления этих каскадов осуществляется изменением постоянного напряжения на вторых затворах, а регулирующее напряжение АРУ подается на первые затворы транзисторов.

Между первым и вторым каскадами включены дополнительные кварцевые фильтры, фильтр 4ZQ3 - шестикристальный лестничного типа с полосой пропускания 300 Гц. Фильтр 4ZQ4 - четырехкристальный дифференциально-мостовой, с полосой 2,4 кГц. Переключаются фильтры контактами реле 4К1, 4К2, которые, в свою очередь, управляются переключателем 4SB4. Схемы фильтров и методика их расчета будут приведены в разделе, посвященном конструкции трансивера. Так как узкий фильтр может использоваться не только в телеграфном режиме, а при работе телеграфом, в некоторых случаях предпочтительнее прослушивать широкую полосу, коммутатор фильтров не привязан жестко к переключателю режимов работы трансивера. Конденсаторы 4С19 и 4С23 принадлежат фильтру 4Z03, и их номинал рассчитывается вместе с остальными элементами фильтра так же, как и его входное/выходное сопротивление.

Обычно входное и выходное сопротивление узкополосного фильтра получается значительно меньше широкополосного. Для их согласования использованы резисторы 4R27, 4R35 и 4R47. Кроме того, подбором числа витков катушки связи 4L1" можно подобрать выходное сопротивление каскада на транзисторе 4VT7, равное входному сопротивлению узкополосного фильтра (в нашем случае это примерно 170 Ом). Величина резистора 4R47 равна выходному сопротивлению широкополосного фильтра (в нашем случае 470 Ом). При включении фильтра 4ZQ3 параллельно резистору 4R47 подключается резистор 4R35. Их общее сопротивление должно быть равно выходному сопротивлению этого фильтра. Резистор 4R27 имеет сопротивление несколько больше необходимого для точного согласования. Это объясняется тем, что при подключении узкого фильтра, при равном затухании в фильтрах громкость сигнала на выходе трансивера субъективно снижается. Для компенсации этого эффекта затухание широкополосного фильтра надо немного (на 3...4 дБ) увеличить.

В остальном усилитель ПЧ особенностей не имеет. В звуковой диапазон сигнал ПЧ переносится кольцевым смесителем на диодах 4VD13 - 4VD16. Через конденсатор 4С48 сюда же поступает сигнал второго гетеродина, который находится в блоке передающего тракта (IF TX) и будет рассмотрен чуть позже.

Первый каскад УЗЧ выполнен на операционном усилителе 4DA3.1. Его расчетное усиление около 60 дБ может быть изменено подбором резистора 4R26. Далее следует активный фильтр нижних частот 3-го порядка с "чебышевской" характеристикой (4DA3.2) и частотой среза 2,4 кГц. Его АЧХ показана на рис. 9.

Puc.9

Коэффициент передачи фильтра теоретически должен быть равен единице, но фактически он имеет затухание 0,3...0,5 дБ. К выходу фильтра через делитель на резисторах 4R36,4R37 подключен детектор АРУ (4С21, 4VD7, 4VD9, 4С18). Выпрямленное напряжение АРУ через эмиттерный повторитель 4VT6 подается в цепь первых затворов УПЧ. Переключателем 4SB3 система АРУ может быть отключена. Постоянная времени АРУ определяется цепочкой 4С18, 4R21, глубина - положением движка подстроечного резистора 4R37. В данном аппарате реализована простейшая система АРУ с одной постоянной времени. Она не очень глубока и работает "ненавязчиво". Избавляя оператора от "ударов по ушам", в то же время позволяет чувствовать динамику эфира. Используется в основном в режимах RTTY и SSB. В телеграфном режиме надобность в автоматической регулировке усиления обычно не возникает.

К выходу 4DA3.2 подключен второй фильтр нижних частот с частотой среза приблизительно 800 Гц. Это ФНЧ пятого порядка, также построенный по полиному Чебышева. Он выполнен на элементах 4DA3.3 и 4DA3.4. АЧХ фильтра приведена на рис. 10.

Puc.10

Этот фильтр может быть включен в тракт НЧ коммутатором 4DA4.2 и 4DA4.4. Ключ 4DA4.1 используется как инвертор, а ключ 4DA4.3 отключает низко-частотный тракт от оконечного УЗЧв режиме передачи. Сигнал на его управляющий вход подается через транзисторный ключ-инвертор 4VT10. Суммарная АЧХ двух фильтров приведена на рис.11.

Puc.11

На рис. 7 показан тракт ПЧ передачи (IF TX). Низкочастотный сигнал c микрофонного усилителя-ограничителя через простейший ФНЧ (4С63, 4С66, 4R72) подается на балансный модулятор (диоды 4VD23 - 4VD26). Усилитель DSB выполнен на двухзатворном полевом транзисторе 4VT15, далее следует эмиттерный повторитель 4VT17. Между ними включен ограничитель на встречно-параллельных диодах 4VD31,4VD32. Он предназначен для выравнивания уровней тонов AFSK-сигнала в режиме RTTY Тракт формирования SSB настраивается так, чтобы ограничения в этом

узле не наступало. Диод 4VD33 в эмиттерной цепи транзистора предназначен для отключения эмиттерного повторителя 4VT17 от кварцевого фильтра основной селекции в режиме приема. Нагрузочный резистор 4R90 при этом остается подключенным к фильтру.

В режиме SSB опорный сигнал для балансного модулятора формируется кварцевым генератором на транзисторе 4VT12, собранным по схеме "емкостной трехточки". Этот же сигнал подается на второй смеситель приемного тракта. В режиме RTTY для сдвига тонов принимаемого сигнала вверх частота кварцевого генератора "уводится" вниз. Для этого служат элементы 4С53, 4С55, 4VD18, 4VD20. В режимах CW и SSB правый по схеме вывод резистора 4R70 никуда не подключен, диоды 4VD18 и 4VD20 закрыты и конденсаторы 4С53 и 4С55 не оказывают заметного влияния на работу генератора. При переходе в режим RTTY на диоды через резистор 4R70 подается открывающее напряжение и конденсаторы 4С53 и 4С55 оказываются подключенными параллельно 4С52, 4С54, что снижает частоту генерации на несколько сотен герц. Сдвиг частоты можно регулировать подбором этих конденсаторов.

На балансный модулятор сигнал опорной частоты подается через усилитель на транзисторе 4VT14, нагрузкой которого является резистор 4R82. В стоковую цепь транзистора включен диод, который служит для отключения усилителя от балансного модулятора в режиме CW. Это предотвращает появление в эфире неподавленного остатка несущей.

Генератор на транзисторе 4VT13 формирует телеграфный сигнал и двухтональный AFSK. Через конденсатор 4С75 он подается на "холодный" конец контурной катушки 4L8. Этот конденсатор вместе с 4С79 образуют емкостный делитель. Соотношение емкостей определяет коэффициент связи генератора с контуром. Телеграфная манипуляция осуществляется изменением коэффициента передачи усилителя DSB 4VT15. Длительность фронтов телеграфных посылок определяется постоянной времени цепочки 4R87, 4С82. Уменьшая значение 4С82 можно увеличить "жесткость" манипуляции.

Для частотной манипуляции в режиме RTTY используются элементы 4VD17, 4VD19, 4С56, 4С57 и ключевой транзистор 4VT11.

Переключение всех узлов трансивера с приема на передачу осуществляется одним сигналом RTX, принимающим значение +12 В в режиме передачи и О В в режиме приема. На элементах 4DD1, 4VT3,4VT4,4VT5 (см. рис. 8) выполнен формирователь этого сигнала. К выводу 1 узла А4 подключена кнопка "РТТ" (педаль, ключ системы голосового управления). В режиме приема ее контакты разомкнуты и на входе триггера Шмитта, выполненного на логических элементах микросхемы 4DD1, присутствует постоянное напряжение величиной +5 В, падающее на стабилитроне 4VD2. На выводе 3 микросхемы 4DD1 логический 0, на выводах 4, 10, 11 - логическая 1. Транзистор 4VT5 открыт, 4VT4 закрыт. Сигнал RTX имеет нулевой уровень. При нажатии на кнопку "РТТ" входное напряжение триггера Шмитта уменьшается до нуля, логические уровни на выходах его элементов изменяются на противоположные. Транзистор 4VT5 закрывается, а 4VT4 открывается. Сигнал RTX принимает значение +12 В. Для стабилизации управляющего напряжения малосигнальных каскадов узла А4 в режиме передачи используется интегральный стабилизатор 4DA2. В режиме приема он отключается диодом 4VD4. Для уменьшения падения напряжения на открытом переходе диод должен быть германиевым.

На схеме (см. рис. 8) отсутствуют элементы 4R3,4R4,4VT2, в предыдущей версии трансивера служившие для управления электронным телеграфным ключом. Так как упомянутый ключ в данной конструкции отсутствует, автор счел возможным не отображать эти элементы на схеме узла, сохранив при этом порядок обозначений, принятый в первом варианте.

Узел А5 содержит микрофонный усилитель передающего тракта, устройство голосового управления (VOX), телеграфный монитор, RTTY-модем и усилитель мощности звуковой частоты приемного тракта.

Схема узла показана на рис. 12. Микрофонный усилитель-ограничитель передатчика выполнен на операционном усилителе 5DA4.1 включенном по схеме неинвертирующего усилителя. Коэффициент передачи усилителя устанавливается подстроенным резистором 5R17 в пределах от 20 до 61 дБ. Микрофон подключается к усилителю через ФНЧ 5C2.5R3.5C7 с частотой среза 2,7 кГц. Резистор 5R5 предназначен для подачи напряжения питания на электретный микрофон. Его номинал подбирается в зависимости от конкретного типа микрофона. Если для работы с трансивером планируется использовать только динамический микрофон, этот резистор можно не устанавливать. Конденсатор 5С9 и резистор 5R14 образуют цепь, корректирующую АЧХ усилителя в области низких частот. Емкость 5С9 также подбирается под конкретный тип микрофона.

Диоды 5VD2 и 5VD3, включенные встречно-параллельно, определяют порог ограничения сигнала усилителя, который равен падению напряжения на р-n переходах. Здесь использованы светоизлучаю щие диоды красного цвета свечения, для которых это напряжение около 1,5 В. Выход микрофонного усилителя через конденсатор 5С35 подключается к входу балансного модулятора узла А4 (вывод 7).

На второй половине микросхемы 5DA4.2 выполнен пиковый детектор VOX. Постоянная времени заряда конденсатора 5С31 определяется сопротивлением резистора 5R36, а времени разряда — 5R34. Элементы микросхемы 5DD1.3 и 5DD1.4 образуют триггер Шмитта, порог переключения которого можно в небольших пределах регулировать подстроечным резистором 5R44 Сигнал управления VOX снимается с вывода 10 элемента 5DD1.3 и подается на соответствующий вход узла А4.

На элементах микросхемы 5DD1.1 и 5DD1.2 собран мультивибратор — телеграфный монитор. Частота генерации определяется номиналами элементов 5С17, 5R12 и 5R16 и устанавливается подстроечным резистором 5R12 равной частоте принимаемого сигнала на середине полосы прозрачности телеграфного фильтра. В нашем случае это примерно 700 Гц. Громкость мониторинга телеграфной манипуляции регулируется подстроечным резистором 5R28. Элементы 5R29, 5R30, 5С26, 5С28 образуют ФНЧ, предназначенный для приближения формы сигнала к синусоидальной. Этот сигнал через конденсатор 5С27 и регулятор уровня громкости (R5 на схеме межблочных соединений) подается на оконечный усилитель 34. Туда же с блока управления (узел А8) через вывод 5 узла, подстроечный резистор 5R49 и фильтрующую цепочку 5R45, 5СЗЗ поступает сигнал "озвучивания" нажатий кнопок клавиатуры синтезатора.

Оконечный усилитель звуковой частоты выполнен на микросхеме 5DA2 TDA2003 (отечественный аналог К174УН14) по типовой схеме и особенностей не имеет. Его чувствительность регулируется подбором резистора 5R18 в пределах единиц — десятков килоом.

Теперь перейдем к рассмотрению RTTY-модема. Хочу еще раз напомнить, что он необходим только, если вы используете старые программы для работы телетайпом (например, Mix221) на компьютере класса ХТ/АТ286 (386). Современные программы позволяют использовать для декодирования AFSK сигнала звуковую карту современного компьютера, и необходимость в этом модеме отпадает.

Это так называемый НАМСОММ-модем, который выполнен на счетверенном операционном усилителе 5DA3. На элементах 5DA3.1— 5DA3.3 реализован низкочастотный полосовой фильтр, представляющий собой комбинацию каскад но соединенных ФВЧ 3-го порядка (5DA3.1) и ФНЧ 5-го порядка (5DA3.2, 5DA3.2). Оба фильтра построены по полиномам Чебышева Суммарная характеристика фильтра показана на рис. 13. Так как порядок фильтра верхних частот ниже, чем у фильтра нижних частот, нижний скат характеристики фильтра получился более пологим.

Поскольку данный модем предназначен для подключения к последовательному порту персонального компьютера, необходим преобразователь уровней однополярного сигнала в двухполярный стандарта RS232C. Для этой цели служат транзисторы 5VT1, 5VT2. 5VT3. 5VT1 и 5VT2 — обычные ключи, защищенные от напряжения обратной полярности диодами 5VD7 и 5VD8. Они передают управляющие сигналы РТТ и AFSK TX от компьютера к трансиверу. Транзистор 5VT3 преобразует однополярный сигнал, сформированный микросхемой 5DA3.4 (уровень лог. О — О В, уровень лог. 1 — +9 В) в двухполярный (уровень лог. О — +9 В, уровень лог. 1 — -11 В). Чтобы не вводить в трансивер ради одного каскада источник отрицательного постоянного напряжения, питание для этого транзистора берется от компьютера. Используется сигнал порта RTS. который служит для переключения трансивера в режим передачи. Так как в режиме приема на этом контакте постоянно присутствует напряжение -12 В, оно и было использовано для питания каскада преобразователя уровня. У кого появятся сомнения в правомерности такого включения, напомню, что по спецификации интерфейса RS232C его выходные цепи должны выдерживать режим короткого замыкания неограниченно долго. Так что взять с него пару миллиампер для хорошего дела нам никто не запрещает.

При внимательном рассмотрении схемы оконечного усилителя мощности (узел А6 на рис.14 ) у проницательного читателя может возникнуть вопрос: "А почему, собственно, автор обещает выходную мощность трансивера всего восемь ватт, когда потенциально этот усилитель может отдать вчетверо больше?" Да, действительно, усилитель сделан с четырехкратным запасом, и вот по каким соображениям. Во-первых, из соображений надежности — при таком запасе усилителю не страшны ни работа на несогласованную нагрузку, ни короткое замыкание на выходе. Во-вторых при выходной мощности до восьми ватт он имеет очень малый уровень побочных излучений, что позволило отказаться от диапазонных ФНЧ на выходе трансивера. В- третьих, такой мощности вполне достаточно для возбуждения внешнего усилителя на современных ме таллокерамических лампах.

Схема усилителя достаточно традиционна и разработана в соответствии с предложениями в . Это — трехкаскадный усилитель, первый каскад которого однотактный и работает в режиме класса А. Второй и третий каскады двухтактные, работающие в режимах АВ и В соответственно. Для линеаризации амплитудно-частотной характеристики усилителя первый каскад (транзистор 6VT1) охвачен частотно-зависимой отрицательной обратной связью через цепочку 6R3,6С8. Дополнительная частотная коррекция в области высоких частот осуществляется цепью 6С4, 6С7, 6R4, 6R5. Во втором каскаде (транзисторы 6VT2, 6VT3) элементами частотной коррекции являются цепи 6R10,6С9 и 6R11, 6С11 Третий каскад на транзисторах 6VT4, 6VT5 также охвачен отрицательной обратной связью через цепи 6С18, 6R22, 6С17, 6R18. Благодаря принятым мерам удалось получить линейную АЧХ усилителя в полосе 1...30 МГц с неравномерностью менее 1 дБ и далее до частоты 50 МГц со спадом в 6 дБ. Общее усиление усилителя мощности составляет 36 дБ.

Ток покоя оконечного каскада определяется узлом, выполненным на элементах 6VT6, 6VD2, 6VD3, 6R23, 6R24. Для повышения температурной стабильности оконечного каскада диоды 6VD2, 6VD3 имеют тепловой контакт с транзисторами 6VT4, 6VT5 — они прижаты к их керамическим корпусам. Регулируют ток покоя подстроенным резистором 6R24.

Отдельно следует отметить связь по постоянному току входного (вывод 2) и выходного (вывод 4) контактов усилителя мощности через элементы 6L1, 6R25 и вторичную обмотку трансформатора 6Т4. На вход усилителя, кроме высокочастотного напряжения возбуждения, подается постоянное управляющее напряжение прием/передача (+12 В — передача, 0 В — прием), которое через дроссель 6L1 поступает на цепи смещения всех трех каскадов, благодаря чему усилитель переводится в режим передачи. Это же напряжение через обмотку трансформатора 6Т4 и выходной контакт 4 узла А6 попадает на плату узла А1, где используется для управления PIN-диодами антенного коммутатора (об этом упоминалось во второй части статьи).

Синтезатор, используемый в данном трансивере, является дальнейшим развитием конструкции, описанной в . Это однопетлевой PLL (далее по тексту ФАПЧ) синтезатор с относительно высокой частотой сравнения (8 кГц) и ГУН, работающий в диапазоне частот 80... 125 МГц. Благодаря высокой частоте сравнения время установления частоты в худшем случае не превышает 25 мс. Применение малошумящих СВЧ транзисторов, тщательная проработка схемотехники и выбор компонентов ГУН вместе с просчитанной по методике Philips (документ AN91004) и смоделированной на ЭВМ цепи обратной связи ФАПЧ обеспечило низкий уровень собственных шумов синтезатора. Частота ГУН, лежащая в УКВ диапазоне, делится в 4... 18 раз, что также в соответствующее число раз снижает фазовый шум, свойственный синтезаторам с ФАПЧ.

Основные технические характеристики

Выходная частота синтезатора, МГц............ .8,89...62,5

Минимальный шаг перестройки частоты, Гц.......... .3...8

Время установления частоты*, мс, не более............ .25

Долговременная нестабильность частоты**, не хуже..... .10~6

Погрешность индикации частоты, Гц.................. .100

Точность установки значения ПЧ, Гц................. .100

Ток, потребляемый от источника питания, мА, не более....................57

Габариты, мм............ .80x82x15

* Зависит от диапазона.
** Определяется качеством примененного кварцевого резонатора.

На выходе синтезатора формируются импульсы с частотой, вдвое большей, чем необходимо. Эта частота делится непосредственно в смесителе трансивера триггером, формирующим противофазный сигнал, который управляет ключевыми диодами смесителя.

На рис. 15 показана блок-схема синтезатора (узла А7). Блоки 1 (делитель с переменным коэффициентом деления), 2 (импульсно-фазовый детектор), 4 (фильтр нижних частот) и 7 (генератор, управляемый напряжением) формируют сетку частот с шагом 8 кГц. Они охвачены петлей ФАПЧ. Шаг сетки равен частоте сравнения. Он определяется блоком 3 - делителем с фиксированным коэффициентом деления. Блоки 1, 2 и 3 входят в состав микросхемы МС 12202 фирмы Motorola. Для управления коэффициентом деления ДПКД и ДФКД используются регистры с последовательной загрузкой, которые также входят в состав микросхемы, но для упрощения на схеме не показаны. Блоки 5 (подстраиваемый кварцевый генератор), 6 (управляемый делитель частоты), 8 (цифро-аналоговый преобразователь) выполнены на дискретных элементах и соответствующих своему назначению отдельных микросхемах.

Для организации перестройки в пределах восьмикилогерцового сегмента используется сдвиг частоты опорного кварцевого генератора. Это несколько снижает стабильность опорного генератора и, соответственно, общую стабильность частоты синтезатора, но, как показала практика, с этим вполне можно мириться. Кстати, в промышленных частотомерах, например 43-34, опорный кварц тоже подстраивается варикапом, и ничего - имеем долговременную нестабильность 10"8! Диапазон перестройки кварцевого генератора можно рассчитать по формуле:

Δ F = Fоп/(К+1), (1)

где Δ F - приращение частоты опорного кварцевого генератора; Fоп - частота опорного кварцевого генератора; К - коэффициент деления ДПКД. Максимальный диапазон перестройки опорного кварцевого генератора, требуемый на минимальной рабочей частоте ГУН, т.е. на частоте 80 МГц, может быть рассчитан так:

К = 80000/8 =10000; (2)

Δ F=12000/(10000+1)= 1,2 кГц. (3)

Для кварцевого резонатора с частотой 12 МГц такая расстройка реализуется достаточно просто. В этом случае дискретность перестройки частоты при использовании восьмиразрядного ЦАП составит 8000/2 8 = 31,25 Гц. Но это на частоте ГУН, а если учесть коэффициент деления делителя на выходе синтезатора, то эта величина составит 31,25/18=1,73 Гц. Это - минимальная физически достижимая дискретность перестройки в данном синтезаторе. Фактически дискретность перестройки на разных диапазонах не одинаковая и выравнивается программно.

Для удобства настройки она приводится к величине 12... 15 Гц. При всей привлекательности такой схемы синтезатора ей присущи две проблемы. Первая - сопряжение сегментов. Рассмотрим процесс перестройки частоты синтезатора вверх. Процессор последовательно увеличивает код регистра ЦАП, что вызывает повышение частоты опорного кварцевого генератора и, соответственно, благодаря петле ФАПЧ, частоты на выходе синтезатора. Этот процесс идет монотонно до тех пор, пока частота не достигнет границы текущего восьмикилогерцового сегмента. В этот момент процессор передает новый код коэффициента деления ДПКД, на единицу больший предыдущего. Частота на выходе синтезатора должна бы скачком увеличиться на величину частоты сравнения (8 кГц), но одновременно процессор обнуляет код ЦАП. И если значение перестройки синтезатора, приведенное к выходу, также равно 8 кГц, скачка частоты не происходит.

В этой статье процедура подбора значения перестройки частоты опорного кварцевого генератора для получения монотонности перестройки именуется сопряжением сегментов. Но так как значение сдвига частоты опорного кварцевого генератора является функцией от коэффициента деления ДПКД, т. е. от выходной частоты синтезатора, код, записываемый в ЦАП, вычисляется аналитически при каждом изменении коэффициента деления ДПКД. Вычисление этого кода в реальном времени и является первой проблемой. Вторая проблема напрямую связана с первой. Это - нелинейность регулировочной характеристики системы ЦАП - варикап - кварц. Для варикапов, примененных в синтезаторе, эта зависимость была снята экспериментально и в виде таблицы хранится в памяти контроллера.

Из вышесказанного следует, что для управления синтезатором необходим компьютер. Он может быть как внешний, например IBM PC, так и встроенный в трансивер. Вариант с управлением извне использовался на этапе макетирования синтезатора и в реальной работе мало пригоден, так как трансивер в этом случае теряет автономность. Гораздо удобнее иметь встроенный контроллер, выполняющий все функции управляющей ЭВМ. А для управления от внешнего компьютера гораздо лучше иметь какой-нибудь стандартный интерфейс, например, CI-V фирмы ICOM. Это позволит использовать огромное количество прикладных радиолюбительских программ, в которых предусмотрено управление трансиверами этой фирмы.

В предлагаемом вашему вниманию аппарате данная возможность не реализована, так как для упрощения и удешевления синтезатора был применен младший контроллер семейства AVR, у которого объем памяти программ не позволяет реализовать этот протокол. Описание же "продвинутой" версии контроллера выходит за рамки этой статьи. Теперь обратимся к схеме на рис. 16. Так как быстродействующий RISC-процессор серии 90S создает несколько больший уровень помех, чем 89С2051, использованный в прeдыдущей версии синтезатора, контроллер здесь отделен от собственно синтезатора. Это облегчает экранировку отдельных узлов устройства.

Кроме того, это решение повышает гибкость системы. Например, можно использовать разные контроллеры: от простейшего, с минимальными возможностями, описанного ниже, до достаточно сложного и универсального. При этом плата синтезатора не подвергается никаким изменениям.

Как уже упоминалось, основным элементом этой платы является однокристальный синтезатор МС12202 фирмы Motorola, микросхема 7DA4. Внутренний опорный генератор микросхемы не используется, так как с ним не удается получить приемлемого сдвига частоты. Напряжение опорной частоты формирует генератор, выполненный по традиционной схеме на транзисторе 7VT4. Сдвиг частоты генератора внутри резонансного интервала кварцевого резонатора осуществляется варикапами 7VD3, 7VD4, включенными встречно-последовательно в цепь резонатора. Нижнюю частоту генератора и величину сдвига можно регулировать в небольших пределах подстроечными конденсаторами 7С29 и 7С23 соответственно. При необходимости параллельно подстроечным конденсаторам включают постоянные конденсаторы 7СЗО и 7С24, емкость которых подбирают при настройке. Через емкостный делитель 7С25.7С35 сигнал опорной частоты поступает на вход BQ1 микросхемы 7DA4 (выв. 1). Управляющее напряжение сдвига подается на варикапы 7VD3, 7VD4 с ЦАП, выполненного на микросхеме 7DA1 и резисторах 7R9-7R16, 7R20-7R26.

Благодаря использованию КМОП-регистра 7DD1, который имеет достаточно стабильные уровни логического нуля и единицы, и резисторов класса точности 0,5 %, ЦАП в описываемом синтезаторе (в отличие от аналогичного узла синтезатора прошлой версии) не требует подбора элементов. Кроме того, при последовательной загрузке данных в этот регистр состояние на его выходах не меняется до поступления импульса SL (параллельной загрузки). Благодаря этому устраняется эффект "журчания" синтезатора в процессе перестройки, свойственный прошлой версии устройства. Генератор, управляемый напряжением (ГУН), выполнен на малошумящем СВЧ транзисторе 7VT3. Его особенностью является способ включения варикапов, благодаря которому генератор имеет оптимальные условия самовозбуждения при относительно широкой перестройке частоты.

В качестве частотозадающего элемента 7L1 использована микрополосковая линия. Она выполнена печатным способом непосредственно на плате синтезатора. При проектировании платы предусматривался металлический экран над линией, но при изготовлении опытного образца оказалось, что синтезатор продолжает нормально работать, даже если касаться линии пальцем! В связи с этим от экрана удалось отказаться. ГУН имеет два поддиапазона - 80...100 МГц и 100...125 МГц, которые переключаются диодом 7VD2, отключающим часть линии 7L1. При появлении логической единицы на выводе 3 микросхемы 7DD2 через резистор 7R27 и открытый транзистор 7VT1 протекает ток, который открывает диод 7VD2. Точка линии, к которой подключен диод, оказывается соединенной по переменному току с общим проводом через конденсатор 7С15. Если на выводе 3 микросхемы 7DD2 логический 0, диод закрыт напряжением, приложенным к нему через резистор 7R18 в обратной полярности, и не оказывает никакого влияния на работу ГУН. ВЧ сигнал с резистора коллекторной нагрузки 7R45 и через цепочку 7СЗЗ и 7R36 подается на вход ДПКД (вывод 10) микросхемы 7DA4. К выводам 18 и 20 (выход импульсно-фазового детектора) 7DA4 подключены транзисторы 7VT6 и 7VT7, образующие внешнюю цепь "Charge Pump", согласно терминологии, принятой в документации фирмы Motorola. Элементы 7R52, 7С41, 7R53, 7R54, 7С42, 7С45, 7С48 образуют фильтр нижних частот петли ФАПЧ.

Выходной сигнал, снимаемый с "горячего" конца линии через конденсатор малой емкости 7С17, усиливается каскадом на двухзатворном полевом транзисторе 7VT2 и через эмиттерный повторитель на транзисторе 7VT5 подается на выходной делитель, микросхему 7DD3. Последний выполнен на быстродействующем КМОП-счетчике 74АС161. Сигнал с выхода последнего разряда счетчика (вывод 11) подан на вход параллельной загрузки (вывод 9), благодаря чему, выставляя трехразрядный двоичный код на входах А, В и С, можно управлять его коэффициентом деления К (см. табл. 2). Управляющий код выходного делителя берется с выходов QA, QB, ОС регистра 7DD2.

Кроме того, с этого регистра снимаются сигнал для коммутации катушки ГУН и четырехразрядный двоичный код выбора рабочего диапазона трансивера. Этот код через фильтрующие цепочки 7С1, 7R6, 7С6, 7R5, 7С2, 7R8 и 7С7, 7R7 подается на контакты 3-6 узла А7 (сигнальные линии BAND1 - BAND4) и затем на дешифратор диапазона, находящийся в узле А2 (ДПФ). Детектор захвата ФАПЧ выполнен на транзисторе 7VT8. При захвате частоты транзистор открыт и светодиод 7VD9 светится. На контакте 10 узла А7 присутствует низкий уровень. В описываемом трансивере этот сигнал никак не используется.

Модуль управления синтезатора, узел А8, выполнен на микроконтроллере AT90S2313 фирмы Atmel. Его принципиальная схема показана на рис. 19. Кроме собственно микроконтроллера (микросхема 8DD1), в устройство входят еще две микросхемы 8DD2 и 8DD3. Они обеспечивают опрос клавиатуры модуля управления и работу девятиразрядного знакосинтезирующего индикатора. Последний выполнен на трех, 8HG1-8HG3, трехзначных светодиодных индикаторах зеленого цвета свечения - TOT-3361AG. Резисторы 8R6-8R13 ограничивают ток, протекающий через светодиоды индикатора.

Два младших разряда микроконтроллера объединены с сигналами "DATA" и "CLK" регистра 8DD2, что потребовало некоторых программных ухищрений, но позволило съэкономить два вывода микроконтроллера. Имеются в виду разряды управляющего слова dc0...dc3. Их значение определяет номер индицируемого в данный момент разряда индикатора. Из них два младших dc0 и dc1 используются еще как выход данных для сдвигового регистра и выход тактовой последовательности того же регистра соответственно. При выводе на индикатор очередного разряда вначале изменением состояния dc0 и dc1 последовательно записывается код символа в регистр 8DD2, после чего dc0...dc3 принимают значение номера индицируемого разряда и остаются в этом состоянии до тех пор, пока не придет время отображать следующий разряд.

Одновременно с регенерацией дисплея происходит опрос клавиатуры SB1-SB12, верхние, по схеме, контакты которой подключены к выходам дешифратора 8DD3. Нижние контакты клавиатуры объединены в две группы по шесть кнопок и подключены к двум входам микроконтроллера. Если ни одна из кнопок не нажата, на этих входах постоянно присутствует логическая 1. Нажатие одной из кнопок вызывает появление серии импульсов на входах, проанализировав которые, контроллер определяет номер нажатой кнопки.

Вывод 3 контроллера подключается к шине "РТТ" трансивера. С нее контроллер получает сигнал, в каком режиме находится трансивер: приема или передачи. Это необходимо для обработки функции "Split".

К выводам 4 и 5 узла А8 подключено устройство плавной перестройки трансивера - валкодер (оптико-кодирую-щее устройство). Его прототипом послужила конструкция, описанная в . Непосредственно ручка настройки не претерпела практически никаких изменений (см. деталь 2 в ), остальные же элементы конструкции были доработаны. Схема электрической части валкодера показана на рис. 20.

В качестве оптопар применены фототранзисторные оптроны АОТ137А, работающие на отражение и установленные так, что световой поток излучающего элемента первого оптрона попадает на светоприемник второго, и наоборот. Расстояние между оптическими осями излучающего и приемного датчиков оптрона АОТ137А приблизительно равно 1,9 мм. Исходя из этого размера рассчитывается диск оптического модулятора (кольцо со штрихами). Для правильного определения направления вращения необходим сдвиг фазы импульсной последовательности снимаемой с первой оптопары относительно второй, кратный 90°. При этом максимальное расстояние между штрихами диска оптического модулятора должно быть равно 4/3 расстояния между оптическими осями. Для примененной нами оптопары это расстояние равно 2,53 мм, что соответствует 62 штрихам при диаметре диска 50 мм (рис. 21).

Опрос состояния валкодера осуществляется микроконтроллером по шинам "епс 1" и "епс 2". Алгоритм обработки сигналов построен так, что импульс считается как по положительному перепаду на выходе валкодера, так и по отрицательному, т. е., к примеру, 62 штриха диска обеспечивают 124 шага перестройки. При дискретности шага в 15 Гц скорость перестройки будет примерно 1,8 кГц на один оборот ручки настройки. Если эта величина недостаточна, можно увеличить количество штрихов диска оптического модулятора до 145 (это 4/7 расстояния между оптическими осями), но в этом случае настройка валкодера превратится в достаточно тонкую и трудоемкую работу.

Файл с изображением диска в формате Post Script можно найти на сайте журнала "Радио" . Этот файл нужно импортировать в любую программу векторной графики (Corel DRAW, Xara) и распечатать лазерным принтером на прозрачную пленку.

С выводов 6, 7 и 8 на плату синтезатора (узел А7) подаются управляющие сигналы, а на выводе 10, при нажатии на любую кнопку клавиатуры, формируется короткий звуковой сигнал, который подмешивается в тракт НЧ трансивера (вывод 5 узла А5). Выводы 9 и 11 в описываемой версии программы не используются.

Программа, "зашитая" в микроконтроллер, составляет, пожалуй, 90 % труда, который потребовался на разработку управляющего модуля. Хотя, казалось бы, ничего особенного она не делает. Регенерирует дисплей, опрашивает клавиатуру, обрабатывает импульсы, следующие с валкодера, изменяет текущую частоту и программирует кристалл синтезатора МС12202, пересчитывает внутреннее представление частоты в десятичный формат и выводит на дисплей. Ну и еще кое-какие мелочи, на которых мы не будем заострять внимание. Исходный текст программы публиковаться не будет, но откомпилированная "прошивка" доступна на сайте, упомянутом выше.

Работа с синтезатором

При включении синтезатора трансивер выдает короткий звуковой сигнал. На дисплее на 0,5 секунды появляется начальное сообщение и синтезатор переходит на диапазон 14 МГц в середину RTTY участка. Частота индицируется с точностью до 100 Гц, буква "А" или "В" в первой позиции индикатора обозначает активный VFO.

Для управления синтезатором используется клавиатура из 12 кнопок. Они соединены матрицей 6x2. Один из вариантов клавиатуры приведен на рис. 22.

Назначение клавиш.

SB1 "Fast" - переключение синтезатора в режим быстрой перестройки. В этом режиме каждый импульс от валкодера перестраивает синтезатор на величину одного сегмента частоты. При включенном режиме "Fast" во второй позиции индикатора появляется буква "F". Еще одно нажатие на эту кнопку режим "Fast" выключает. В режиме "Band" эта кнопка включает диапазон 1,9 МГц.

SB2 "Band" - переход на другой диапазон. При нажатии этой кнопки на дисплее отображается слово "Bnd" и программа ожидает нажатия любой цифровой кнопки. Для отмены этого режима без изменения диапазона можно нажать кнопку "ESC". В режиме "Band" эта кнопка включает диапазон 18 МГц.

SB3 "А->М" - запись частоты активного VFO в ячейку памяти. При нажатии этой кнопки на дисплее отображается слово "PUSH" и программа ожидает нажатия любой цифровой кнопки, определяющей номер ячейки, в которую будет записана частота. Для отмены этого режима без записи частоты можно нажать кнопку "ESC". В режиме "Band" эта кнопка включает диапазон 3,5 МГц.

SB4 "Split" - разнос частот приема-передачи. При включении этого режима символ в первой позиции индикатора начинает мерцать. Частота неактивного VFO приравнивается к частоте активного, и теперь, каждый раз при переходе на передачу, происходит смена VFO. Таким образом можно работать на разнесенных частотах как внутри диапазона, так и на разных диапазонах. При выключении режима "Split" частота активного VFO подтягивается к частоте неактивного и синтезатор возвращается на ту частоту, где он находился в момент включения режима "Split".

Если необходимо остаться на частоте приема, то перед выключением режима "Split" надо нажать кнопку "А=В". Нажимая кнопку "А<->В", можно прослушивать частоту передачи. В режиме "Band" эта кнопка включает диапазон 21 МГц.

SB5 "М->А" - извлечение частоты из памяти и запись в текущий VFO. При нажатии этой кнопки на дисплее отображается слово "POP" и программа ожидает нажатия любой цифровой кнопки, определяющей номер ячейки, из которой будет извлечена частота. Если ячейка пуста, то на дисплее будут на короткое время отображены прочерки. Для отмены этого режима без извлечения частоты можно нажать кнопку "ESC". В режиме "Band" эта кнопка включает диапазон 7МГц.

SB6 "Scan" - сканирование частоты. Эта функция работает так. При первом нажатии на клавишу "Scan" включается режим сканирования и частота начинает изменяться в сторону увеличения. Причем частота, на которой находился синтезатор в момент нажатия на эту клавишу, фиксируется как нижняя граница диапазона сканирования. При повторном нажатии на клавишу "Scan" частота, до которой дошел синтезатор, фиксируется как верхняя граница диапазона сканирования, и сканирование перезапускается с нижней границы. Следующее нажатие этой клавиши остановит сканирование, следующее снова запустит, но уже в заданных границах. И так далее. Для выключения режима сканирования со стиранием границ необходимо во время сканирования нажать клавишу "ESC". После этого можно установить новые границы сканирования, как было описано выше. В режиме "Band" эта кнопка включает диапазон 24 МГц.

SB7 "А<->В" - смена активного VFO. Буква А(В)в первой позиции дисплея, указывающая на активный VFO, изменится на В (А). В режиме "Band" эта кнопка включает диапазон 10 МГц.

SB8 . "Lock" - блокировка перестройки частоты валкодером. Обычно используется при работе на общий вызов в режиме RTTY. В режиме "Band" эта клавиша включает диапазон 28 МГц.

SB9 "А=В" - уравнивание частоты неактивного VFO с частотой активного. На дисплее при этом на короткое время отображается слово "А=В". В режиме "Band" эта кнопка включает диапазон 14МГц.

SB10 . "Dial" - эта кнопка не используется и зарезервирована для дальнейшей модификации синтезатора.

SB 11 "ESC" - отмена ввода в некоторых режимах. Кроме того, в режиме сканирования выключает этот режим со стиранием границ диапазона сканирования.

SB 12 "Enter" - установка дискретности перестройки частоты валкодером. При нажатии этой клавиши на дисплее отображается слово "tun-" и мерцающий курсор предлагает ввести цифру. При вводе цифры "0" дискретность перестройки минимальна. В этом случае один импульс от валкодера изменяет частоту синтезатора на один шаг (12...15 Гц). При 62-х штрихах на диске валкодера скорость перестройки примерно 1,8 кГц на один оборот. Если ввести цифру 1, дискретность удваивается, 2 - утраивается и т. д. Соответственно цифра 9 увеличивает скорость перестройки в 10 раз. Но, разумеется, и шаг перестройки тоже увеличится в 10 раз. В режиме "Band" эта клавиша включает диапазон 144МГц.

Редактирование энергонезависимой памяти.

Для того чтобы войти в сервисный режим редактирования энергонезависимой памяти, необходимо нажать любую клавишу и, удерживая ее, произвести аппаратный сброс процессора, например, выключить и снова включить питание или на короткое время соединить с массой DD3.1. Если вы сделали все правильно, на дисплее появится надпись:

ЕЕ 00-00.

Две буквы "Е" в первой и второй позициях дисплея показывают, что синтезатор находится в сервисном режиме редактирования EEPROM Затем после пробела следует двухразрядное шестнадцатеричное число — адрес ячейки памяти и через тире — содержимое этой ячейки также в шестнадцатеричном виде. Первая ячейка энергонезависимой памяти не используется, и в ней находится нулевое значение.

Нажимая клавиши "А<->В" и "Dial", можно соответственно уменьшать и увеличивать адрес ячейки, а клавишами "М->А" и "Lock" изменять содержимое ячейки, находящейся по этому адресу. Для записи нового значения ячейки памяти в EEPROM достаточно нажать клавишу "Enter" Чтобы выйти из сервисного режима, можно нажать клавишу "ESC" или просто выключить питание.

Исходное состояние (дамп) электрически перепрограммируемого ПЗУ (EEPROM) для синтезатора с ПЧ=5 МГц приведено в табл. 3.

Разберем назначение каждого байта EEPROM:

000001 02Н — начальное значение константы скорости перестройки валкодером;

000002 28Н — в настоящей версии не используется;

000003 03Н — маска скорости сканирования, битовая маска, которая может принимать значения:
00000001В=01Н — максимальная скорость
00000011В=03Н
00000111В=07Н
00001111B=0FH
00011111B=FH
00111111B=3FH
01111111B=7FH — минимальная скорость

000004 0FFH — в настоящей версии не используется;

000005 06Н — код диапазона, который включается при работе с УКВ-трансверторами:
00Н — 1.9 МГц
01Н — 3.5 МГц
02Н — 7 МГц
03Н — 10 МГц
04Н — 14 МГц
05Н — 18 МГц
06Н — 21 МГц
07Н — 24 МГц
08Н — 28 МГц;

000006 42Н — не используется

000007 0FH — не используется

С адреса 000008Н по 000013Н находится таблица перекодировки клавиатуры. Ее лучше не трогать.

000014Н 59 С3 00 00 — значение ПЧ для диапазона 1,9 МГц
000018Н 59 С3 00 00 - значение ПЧ для диапазона 3,5 МГц
00001СН 58 С3 00 00 - значение ПЧ для диапазона 7 МГц
000020Н 58 С3 00 00 — значение ПЧ для диапазона 10 МГц
000024Н В1 3С FF FF — значение ПЧ для диапазона 14 МГц
000028Н AF 3С FF FF — значение ПЧ для диапазона 18 МГц
00002СН В1 3С FF FF — значение ПЧ для диапазона 21 МГц
000030H AE 3C FF FF — значение ПЧ для диапазона 24 МГц
000034Н АС ЗС FF FF — значение ПЧ для диапазона 28 МГц
000038Н 01 78 ЕС FF — значение ПЧ для диапазона 144 МГц
00003СН Е1 CF FA FF - значение ПЧ для диапазона 50 МГц

Младший байт числа находится по младшему адресу. Значит, мы имеем значения ПЧ для диапазонов

1,9 МГц - 0С359Н или 50009 (в деся¬тичном виде);
3,5 МГц — 0С359Н или 50009;
7 МГц — 0С358Н или 50008
10 МГц — 0С358Н или 50008;
14 МГц — 0FFFF3CB1Н или -49998;
18 МГц — 0FFFF3CAFH или -50000;
21 МГц —0FFFF3CB1H или-49998;
24 МГц — 0FFFF3CAEH или -50001;
28 МГц — 0FFFF3H или -50003;
144 МГц — 0FFEC7801Н или -1279998;
50 МГц — 0FFFFACFE1H или -339998.

На нижних диапазонах значение ПЧ вычитается и поэтому представлено в виде отрицательного числа.

Особо отметим диапазоны 50 и 144 МГц. В этом случае трансивер работает на одном из KB диапазонов совместно с трансвертером переносящим спектр частот приема/передачи в УКВ диапазон.

Например, трансвертер на 144 МГц с частотой собственного гетеродина 120 МГц переносит область частот трансивера 24,0...24,5 МГц в диапазон 144,0...144,5 МГц. Для правильного отображения информации на дисплее синтезатора частоты 144 МГц при работе в диапазоне 24 МГц мы должны занести значение ПЧ:

Так как это значение вычитается из частоты приема/передачи — число в таблице должно быть отрицательным.

Таким же образом можно вычислить значение ПЧ для трансвертера 50 МГц.

Если ПЧ вашего трансивера отличается от приведенного в данной таблице, таблицу необходимо скорректировать. Для этого надо следовать от обратного. Взять свое значение ПЧ, округлить его до 100 Гц, перевести в шестнадцатеричный формат. Если на этом диапазоне частота вычитается — вычесть это число из 0FFFFFFFFH (можно просто побитно проинвертировать и прибавить единичку) и побайтно занести в соответствующие ячейки EEPROM. (Еще раз напомню — младший байт по младшему адресу).

С адреса 000040Н располагается таблица диапазонов. Она содержит частоты, на которые переходит синтезатор при включении соответствующего диапазона, и один байт, определяющий состояние порта, управляющего коэффициентом деления внешнего делителя частоты и переключением частотозадающей линии ГУН. Таким образом, на каждый диапазон в таблице отведено четыре байта.

Байт порта может принимать следующие значения:

Необходимо отметить, что все вышесказанное справедливо для версии программы 2.09 от 11.02.2001 г. В последующих версиях возможны некоторые изменения, которые, разумеется, будут отражены на моем сайте в интернете.

Предложенный автором вариант управляющего модуля самый простой, имеющий минимум необходимых функций. Как уже говорилось в предыдущей части статьи, синтезатор связан с "внешним миром" трех проводной последовательной шиной и управлять им может любое микропроцессорное устройство с соответствующей программой. Такой вариант оставляет безбрежный простор для фантазии, и каждый, кто дружит с программированием, может разработать контроллер по своему вкусу и на любимом процессоре.

Литература:
5. Денисов В. и др Синтезатор частоты трансивера — Радио 1990. № 3. с. 26. 27.

Схема межблочных соединений трансивера показана на рис. 25. Кроме узлов А1— А8, описанных в предыдущих частях статьи, на схеме как подключенное к А8 самостоятельное устройство, показан узел управления плавной настройкой трансивера — валкодер (Encoder).

Как видно по схеме, трансивер имеет минимум навесных элементов. Каскад на транзисторе VT1 служит для управления телеграфной манипуляцией. Транзистор работает в ключевом режиме. Стабилитрон VD2 защищает базовую цепь транзистора, а цепочка R8, С1 является фильтром импульсных помех Этот каскад не включен в узлы, так как изначально трансивер проектировался под старую версию синтезатора с управлением частотой с помощью телеграфного манипулятора, причем функции телеграфного ключа были заложены в синтезатор. Сигнал телеграфной манипуляции снимался с соответствующего выхода синтезатора и подавался непосредственно на вход 6 узла А4. Так как в предлагаемой версии синтезатора телеграфного ключа нет, для подключения внешнего ключа пришлось ввести этот каскад, который монтируется навесным способом в любом удобном месте трансивера.

Переменным резистором R1 регулируют чувствительность КСВ-метра. Назначения переменных резисторов R2, R3 и R5 указаны на схеме.

Разъем XS1 (девятиконтактный RS 232) служит для подключения к одному из портов компьютера — СОМ1 или COM2. Нумерация контактов разъема XS1 соответствует нумерации контактов разъема порта. Благодаря встроенному в трансивер "НАМСОММ" модему можно работать телетайпом с использованием соответствующей программы (например, MIX 221).

К разъемам XS4 или XS5 подключают педаль (РТТ) и телеграфный ключ. Эти разъемы имеют одинаковую распайку и взаимозаменяемы. Источник питания трансивера подключают к разъему ХР1. Его контакты, для повышения надежности, включены параллельно.

Разъемы XS1, XS4, XS5 и ХР1 установлены на задней панели трансивера.

Разъемы XS2 и XS3 установлены на передней панели трансивера, и к ним можно подключить микрофон, головные телефоны и тангенту (педаль). Разъемы также взаимозаменяемы.

Диод VD1 и предохранитель FU1 служат для защиты трансивера от неправильного подключения (при несоблюдении полярности) внешнего источника питания. Предохранитель установлен в специальном держателе на задней панели трансивера, диод смонтирован на выводах выключателя питания SA1.

Особое внимание при сборке трансивера следует уделить кварцевым фильтрам. Работу над созданием аппарата лучше начать с их изготовления, причем подойти к этому делу серьезно и не жалеть на это времени, так как хороший фильтр это половина трансивера!

В трансивере три кварцевых фильтра: фильтр основной селекции 3ZQ1, дополнительный SSB-фильтр 4ZO4 и телеграфный фильтр 4ZO3. Первый — восьмикристальный, дифференциально-мостовой, дополнительный SSB-фильтр — четырехкристальный дифференциально-мостовой, а телеграфный — шестикристальныи лестничный.

Всего нам понадобится 20 резонаторов на одну частоту (18 на фильтры и два опорных), которая может лежать в пределах 5...9 МГц, за исключением участка в районе 7 МГц.

Изготовление фильтров надо начать с отбора резонаторов. Для этого (помимо мешка кварцев) вам понадобится генератор качающейся частоты ГКЧ (автор использует самодельную приставку к осциллографу) и простейший стенд, который можно собрать на макетной плате. Он позволяет снять АЧХ кварцевого резонатора, АЧХ готового фильтра и построить прототип лестничного фильтра по методике, которая будет описана ниже.

Схема стенда приведена на рис. 26. Он содержит переменный аттенюатор 0...120 дБ с шагом 1 дБ согласующие цепи для подключения исследуемых объектов и усилитель с коэффициентом усиления 80 дБ. Выход ГКЧ подключается к коаксиальному гнезду XW1, детекторная головка — к XW2.

Аттенюатор можно использовать от старого измерительного прибора или сделать по описанию в . Резонансные цепи (L1,C5,C6 и L2,C13,C14) настроены на частоту ПЧ — в нашем случае 5 МГц. Катушки индуктивности L1, L2 намотаны на кольцевых ферритовых магнитопроводах марки 50ВЧ типоразмера К7х4х2 мм и содержат по 22 витка провода ПЭВ-2 0,2. Емкость конденсаторов С5 и С13 равна 150 пФ. Необходимое усиление каскадов устанавливается подбором резисторов R5 и R18. Настройка стенда сводится к настройке в резонанс колебательных цепей и установке требуемого коэффициента усиления.

Начать изготовление фильтра рекомендуется с внимательного прочтения литературы . Многие работы из этого списка написаны более двадцати лет назад — но пусть это вас не смущает, информация, которая там содержится, не устарела. С тех пор в этой области не изобрели ничего нового. Печально другое, вполне вероятно, что в вашей библиотеке эти журналы уже давно сданы в макулатуру, а подшивки "Радио" за тридцать лет есть не у всех. В таком случае — добро пожаловать на http://www/ax25/donetsk.ua/us/us2i, эти статьи там можно найти в разделе "Литература".

Далее необходимо отобрать шесть кристаллов, наиболее близких по частоте. Для этого надо на той же макетной плате собрать простейший автогенератор по схеме, показанной на рис. 28. Электронным частотомером надо измерить частоту генерации каждого резонатора с точностью до одного герца. Из этих кварцев будет изготовлен телеграфный фильтр. Точность установки частоты остальных кристаллов особого значения не имеет, так как их все равно придется перетачивать.

Лестничный телеграфный фильтр проще всего изготавливать по методике, предложенной G3JIK и описанной в . Изготовив в соответствии с этой методикой двухкристальный фильтр, проводим его испытания на стенде. Устанавливаем сопротивления подстроечных резисторов стенда R7 и R27 равными рассчитанному, снимаем АЧХ фильтра и измеряем полосу пропускания по уровню -6дБ. Полученная в результате экспериментов величина Z будет использована в дальнейшем для расчета фильтра.

В описываемом трансивере полоса пропускания узкого фильтра выбрана равной 300 Гц, что объясняется ориентацией в основном на работу в режиме RTTY. Для работы телеграфом, особенно в условиях соревнований, полосу пропускания лучше сделать несколько шире (500...800 Гц.).

Добившись необходимой полосы пропускания, собираем фильтр по схеме на рис. 29.

Значения емкостей конденсаторов фильтра вычисляем по формуле:

С = K/(2пfZ) .

где К — коэффициент емкости, указанный на схеме; f — частота фильтра.

Собрав фильтр, снимаем его АЧХ, нагрузив вход/выход на сопротивления, равные Z. Его полоса пропускания должна быть равна той, которую мы получили у двухкристального прототипа. Частоты верхнего и нижнего скатов полосы пропускания надо измерить с максимально возможной точностью.

Теперь, зная частоты верхнего и нижнего скатов телеграфного фильтра, надо четко себе представить распределение опорных частот в трансивере. Это удобно сделать в виде диаграммы, показанной на рис. 30 Внизу, вдоль координатной оси, показаны относительные значения частоты (по сути, это звуковая частота на выходе НЧ тракта). Они не зависят от значения ПЧ. Абсолютные значения необходимо пересчитать под вашу конкретную промежуточную частоту, точнее под частоты верхнего и нижнего скатов телеграфного фильтра. На рис. 30 они приведены для значения ПЧ 5 МГц.

Далее можно приступить к изготовлению фильтра основной селекции. Фильтр 3ZQ1 состоит из двух четырехкристальных звеньев. Два резонатора в звене имеют частоту примерно на 300 Гц выше нижнего ската фильтра, два других — на 300 Гц ниже верхнего. Например, в нашем случае резонаторы 3ZQ1.1 и 3ZQ1.3 имеют частоту 5000170 Гц, a 3ZQ.1.2 и 3ZQ1.4 - 5002270 Гц.

Имеющиеся резонаторы необходимо подогнать под эти частоты. Эта работа не слишком сложна, но требует терпения, чистоты и аккуратности. Хорошо прогретым (но не перегретым) мощным паяльником необходимо распаять корпусы кварцевых резонаторов, следя за тем, чтобы расплавленный припой не попал на пластину. Основание корпуса надо очистить от избытка припоя.

После остывания кристаллов можно приступить к подгонке рабочей частоты. Подключив резонатор к генератору (см. рис. 28) и контролируя частоту генерации частотомером, надо подогнать рабочую частоту каждого резонатора. Повысить частоту резонатора можно, подтачивая металлизацию пластины микронной наждачной бумагой. После подточки, перед каждым измерением, пластину надо обмахивать чистой беличьей кисточкой. Понижать частоту удобно палочкой свинцово оловянного припоя, проводя короткие штрихи по металлизированной поверхности пластины. В процессе работы полезно контролировать амплитуду ВЧ сигнала на выходе генератора. Заметное ее снижение говорит об ухудшении добротности резонатора. Скорее всего, это происходит из-за загрязнения пластины.

Еще раз отмечу, что все предметы, входящие в соприкосновение с пластиной, должны быть абсолютно чистыми и не содержать следов жира.

После подгонки кристаллы необходимо выдержать три-четыре дня и снова проконтролировать частоту. Она не должна измениться более чем на 5... 10 Гц. Многие авторы рекомендуют снова запаять корпус каждого резонатора. По моему мнению, этого делать не стоит. Достаточно общей герметизации фильтра.

Монтаж фильтра выполнен навесным способом в корпусе, спаянном из фольгированного стеклотекстолита.

Настройка сводится к получению требуемой АЧХ подбором конденсаторов ЗС20—ЗС25 и резистора 3R16.

Дополнительный SSB фильтр — любая из половинок фильтра 3ZQ1. Методика изготовления и настройка та же.

Литература:
6. Скрыпник В. Ступенчатый аттенюатор. — Радио. 1984. № 5. с. 21.
7. Бунимович С. Г., Яйленко Л. П. Техника любительской однополосной радиосвязи. : М. ДОСААФ, 1970.
8. Жалнераускас В. Кварцевые фильтры на одинаковых резонаторах. — Радио, 1982, № 1, с.18—20; № 2, с. 20-21; № 6, с. 23-24.
9. Жалнераускас В. Выбор резонаторов для кварцевых фильтров. — Радио, 1963. № 5, с. 16.
10. Жалнераускас В. Согласование кварцевых фильтров. — Радио, 1983, № 7, с. 20.
11. Бунин С. Г., Яйленко Л. Г. Справочник радиолюбителя-коротковолновика. — Киев.: Техника 1984

Узлы трансивера А1 — А8 и схема формирователя узла валкодера выполнены на печатных платах из двухсторонне фольгированного стеклотекстолита. Практически во всех узлах, кроме А7 и А4, одна сторона плат (сторона установки радиоэлементов) имеет сплошную металлизацию и используется как общий провод. Отверстия под выводы радиоэлементов, не имеющих контакта с общим проводом, раззенкованы.

В основном в узлах трансивера, за некоторыми исключениями, о которых чуть ниже, применены постоянные резисторы МЛТ-0,125 (возможна установка МЛТ-0,25), подстроечные—СП3-22б. Все постоянные конденсаторы — дисковые, малогабаритные импортного производства (конденсатор 1С1 — на рабочее напряжение не менее 100 В), все подстроечные — КТ4-21 емкостью 8... 30 пФ, оксидные конденсаторы — К50-16, К50-35.

Все реле в узлах трансивера — РЭС49 с сопротивлением обмоток 700 Ом. Все переключатели, установленные на платах, — ПКН62.

Узел А1 собран на плате размерами 110x62 мм. Радиоэлементы монтируют традиционно, с верхней стороны платы, кроме диодов 1VD3 1VD4, которые устанавливают со стороны печатных проводников. Диоды 1VD7,1VD10 — любые германиевые, диод 1VD1 — с допустимым обратным напряжением не менее 75 В.

Трансформатор 1Т1 выполнен на кольцевом ферритовом магнитопроводе проницаемостью 400—600НН с внешним диаметром 16—20 мм. Первичная обмотка (между выводом 7 узла и конденсатором 1С9) — один виток провода МГТФ-0,12, вторичная — 30...40 витков провода ПЭВ-2 0,15, намотанных равномерно в один слой.

Катушки индуктивности 1L3, 1L5 бескаркасные, намотаны на оправке диаметром 6 мм и имеют по 9 витков провода ПЭВ-2 0,8. Длина намотки — 7,5 мм. Дроссели 1L1, 1L2, 1L4, 1L6, 1L7 — типа КИГ-0,1 200мкГн.

Элементы схемы измерителя КСВ и фильтра нижних частот заключены в экраны высотой 12 мм из луженой жести.

Конструкция узла А2 (ДПФ напоминает конструкцию некогда предложенную RA3AO . В качестве каркасов контурных катушек использованы отрезки внутреннего диэлектрика диаметром 9 мм от коаксиального кабеля. Крайние катушки фильтра намотаны на бумажных гильзах, которые могут с небольшим трением перемещаться по каркасу. Средняя катушка намотана непосредственно на каркасе.

Каркасы катушек установлены в коробке из фольгированного стеклотекстолита толщиной 1,5 мм припаянной на "земляной" стороне печатной платы узла размерами 200x116 мм. Они закреплены шурупами "саморезами" диаметром 2 мм, ввинченными с обоих торцов каркаса в отверстия, оставшиеся от центральной жилы кабеля. Высота стенок коробки 22,5 мм. Рекомендуется при монтаже печатной платы сначала установить катушки, а только затем впаивать реле, так как последние затрудняют доступ к головкам шурупов.

Намоточные данные катушек и номиналы конденсаторов двухконтурных и трехконтурных фильтров приведены в табл. 4 и 5 соответственно.

Узел A3 выполнен на плате размерами 47,5x82,5 мм. В узле применены резисторы и конденсаторы для поверхностного монтажа (SMD) типоразмера 0805. Они установлены со стороны печатных проводников. Также установлены диоды смесителя и микросхема 3DD1 (исполнение корпуса SOT108-1). Все остальные элементы узла с выводами и смонтированы традиционно. Транзисторы 3VT1 и 3VT2 установлены выводами в сторону платы. Их резьба укорочена до 5 мм.

Трансформатор 3Т1 намотан на ферритовом магнитопроводе марки 600НН типоразмера К10x6x3 мм. Обмотка содержит 2x25 витков провода ПЭВ-2 0,14. Намотка в два скрученных провода. Начало одной обмотки соединено с концом другой.

Трансформатор 3Т2 — на ферритовом магнитопроводе типоразмера К12x6x5 мм марки М30ВЧ-2. Обмотка содержит 2x9 витков провода ПЭВ-2 0,35. Намотка в два свитых вместе провода. Начало одной обмотки соединяют с концом другой.

Трансформаторы 3Т3 и 3Т4 — на ферритовых магнитопроводах типоразмера К7х4х2 мм марки 600НН. Обмотки содержат 3x22 витка провода ПЭВ-2 0,14. Намотка — в три провода свитых вместе. Начало одной обмотки соединяют с концом другой, третья обмотка используется как обмотка связи.

Дроссели 3L1, 3L2, 3L3 — типа КИГ-0,1 200мкГн.

Печатная плата узла А4 наиболее сложная в трансивере. Ее размеры 102x150 мм. Так же, как и в остальных узлах, со стороны установки компонентов она имеет практически сплошную металлизацию, служащую общим проводом. Но в связи с высокой плотностью расположения деталей, плату не удалось оттрассировать на одной стороне. Некоторые связи пришлось перенести на сторону установки компонентов.

Кварцевые резонаторы узла в корпусах Б1 или M1 (на плате предусмотрены отверстия под оба варианта). Намоточные данные катушек индуктивности приведены в табл. 6.

Узел А5 выполнен на плате размером 104x62 мм и каких-либо особенностей не имеет.

Узел А6 выполнен на плате размерами 154x56 мм. Компоненты узла установлены со стороны печатных проводников, а сплошная металлизация, используемая как общий провод, находится на нижней стороне платы. Плата установлена на металлических стойках высотой 4 мм на пластине-теплоотводе из алюминиевого сплава. ВЧ транзисторы закреплены на теплоотводе их выводы отогнуты вверх и припаяны к дорожкам платы. В плате для этой цели сделаны квадратные отверстия. Дроссели: 6L1 — ДМ-0,1 100 мкГн; 6L2, 6L3 — ДМ-0,2 10 мкГн; 6L4, 6L5 — ДМ 0,1 50 мкГн; 6L6 - ДМ-3 10 мкГн.

Синтезатор А7 выполнен на печатной плате размерами 80x82 мм. Печатная плата двухсторонняя, но практически все связи разведены по верхней стороне платы. Снизу почти всю площадь занимает металлизация, используемая как общий провод. Синтезатор не содержит намоточных узлов. Катушка 7L ГУН выполнена как микрополосковая линия, вытравленная непосредственно на плате.

Большинство компонентов в синтезаторе — планарные (SMD) типоразмера 0805. Они установлены на верхней стороне платы. Там же установлены обычные конденсаторы 7С12, 7С19, 7С43 и микросхемы 7DA1, 7DA2, 7DA3. Снизу установлены только выводные компоненты: 7VD2—7VD6, 7R30, 7ZQ1, 7DD3. Резисторы, использованные в ЦАП, должны иметь допуск не ниже 0,5 % (кстати, однопроцентные резисторы из одной ленты обычно укладываются в 0,5 %), остальные — 5 %. К конденсаторам особых требований не предъявляется. Варикапы 7VD3—7VD6 можно заменить на другие (лучше импортные) с начальной емкостью 5 пФ и с коэффициентом перекрытия по емкости не менее 7.

Плата контроллера синтезатора имеет размеры 91x41 мм. Постоянные конденсаторы, резисторы и микросхемы для поверхностного монтажа (SMD). Кварцевый резонатор 8ZQ1— РК319 или РК351 (в корпусе типа "лодочка").

Налаживание трансивера производят поблочно, начиная с настройки синтезатора частоты. Управляющий модуль синтезатора настройки не требует. Достаточно только подключить питание и убедиться, что синтезатор адекватно реагирует на нажатия кнопок клавиатуры и выдает последовательности импульсов на выходах "SERIAL DATA", "SERIAL LOAD" и "CLOCK" при вращении ручки валкодера. Затем управляющий модуль необходимо подключить к плате синтезатора частоты подать питание и порадоваться ровному свечению светодиода 7VD9 индицирующему захват частоты петлей ФАПЧ (PLL). При переключении диапазонов он должен на долю секунды гаснуть, но потом снова загораться. Отсутствие свечения этого светодиода или его мерцание говорит об отсутствии захвата ФАПЧ. В этом случае надо убедиться в наличии генерации ГУН (ВЧ напряжение на выводе 10 микросхемы 7DА4 должно быть не менее 150...200 мВ) правильности коммутации частотозадающей линии 7L1, наличии управляющей импульсной последовательности при вращении валкодера на входах 11, 13, 14 микросхемы 7DA4. Обратите внимание, для некоторых экземпляров микросхемы-синтезатора МС12202 приходится уменьшить емкость конденсатора 7С3.

Добившись правильной работы ФАПЧ, необходимо проверить работу ЦАП. Вращая ручку валкодера. убеждаемся в наличии ступенчатого напряжения в точке соединения резисторов 7R16 и 7R26.

В узле А1 снимают АЧХ фильтра нижних частот и при необходимости подстраивают ее в соответствии с рис 31. Рефлектометр балансируют подстроечным конденсатором 1С14.

Настройка фильтров узла А2 осуществляется по обычной методике, с применением измерителя частотных характеристик, например, X1-47. Хорошо настроить трехконтурные полосовые фильтры с помощью ВЧ генератора и ВЧ вольтметра практически невозможно.

В узле A3 вывод +12 В ТХ соединить с общим проводом (режим приема). Подать на верхний по схеме вывод дросселя 3L1 сигнал от измерителя частотных характеристик. Установить роторы конденсаторов 3С13 и 3С15 в среднее положение и подбором конденсатора 3С14 настроить контур в резонанс на частоте, равной ПЧ (например, 5 МГц). Резисторы 3R1 и 3R3 подбирают либо по максимуму усиления каскада, либо по минимуму коэффициента шума. К сожалению, эти точки немного не совпадают. А можно попросту выставить токи стока транзисторов 3VT1, 3VT2 — 25...30 мА и на этом успокоиться. Критерий — транзистор должен греться, но не обжигать палец. Диоды 3VD5—3VD12 в смесителе можно заменить на КД922 с любой буквой.

Низкочастотная часть узла А4 настройки не требует. Достаточно снять АЧХ НЧ тракта и сравнить ее с приведенной на рис. 9—11. Полученная в результате измерений кривая не должна отличаться от изображенной на рисунках более чем на 1…1,5дБ.

Затем необходимо выставить частоты опорных кварцевых генераторов. Эти частоты были нами просчитаны еще в процессе изготовления кварцевых фильтров (см. рис. 30). Разброс параметров резонаторов из разных партий и от разных производителей очень велик, и возможно, придется подбирать емкости конденсаторов 4С52, 4С53, 4С56, 4С60 и индуктивность дросселей 4L4 и 4L5 в довольно больших пределах. Не исключено, что придется "подточить" и сами резонаторы, но, я думаю, после изготовления двух дифференциально-мостовых фильтров, это не должно вас пугать. При желании, окончательный подбор частоты опорного кварцевого генератора SSB можно выполнить на слух по наиболее приемлемому тембру уже реального, принимаемого из эфира сигнала.

Предварительная настройка передающего тракта заключается в балансировке балансного модулятора подстроечным резистором 4R78 и одним из конденсаторов 4С68 или 4С73. Несмотря на то, что на схеме и раскладке деталей на печатной плате показаны оба этих конденсатора, фактически в плату устанавливается только один. Какой — выясняется при настройке. Правильно настроенный балансный модулятор должен подавить несущую более чем на 50 дБ. Одновременно с балансировкой БМ необходимо настроить контур 4L8, 4С76, 4С80 в резонанс. На этом предварительная настройка передающего тракта заканчивается. При окончательной настройке трансивера, возможно, придется подобрать резистор 4R86 для получения необходимого усиления в тракте DSB.

В точку if-in приемного тракта узла А4 подаем сигнал от ГСС с частотой, равной ПЧ, и напряжением 100 мВ. Подбором и подстройкой конденсаторов 4С10, 4С11, 4С32, 4С34, 4С41, 4С42 настроить в резонанс контуры усилителя ПЧ (при этом, по мере настройки, напряжение сигнала ГСС постепенно снижаем до 1 мкВ). Настроенный тракт ПЧ должен иметь чувствительность при соотношении S/N 20 дБ не хуже 0,1 мкВ Обычно усиление его получается несколько избыточным, и приходится шунтировать контурные катушки резисторами в несколько килоом.

Настройку усилителя мощности желательно производить, используя анализатор спектра. Подстройкой резистора 6R24 устанавливаем токи выходных транзисторов 6VT4, 6VT5 по минимуму комбинационных составляющих в спектре сигнала (50...100 мА). Подбором резистора 6R12 устанавливаем токи покоя транзисторов 6VT2 и 6VT3 около 25...50 мА. Коэффициент передачи тракта можно регулировать подбором резисторов 6R4, 6R5 в пределах 6,8... 100 Ом (у автора — 56 Ом). Ток покоя 6VT1 (25...50 мА) устанавливаем подбором резистора 6R2.

После того как синтезатор и все шесть функциональных узлов радиочастотного тракта собраны, предварительно настроены, смонтированы на шасси трансивера и соединены жгутами, можно приступать к окончательной настройке аппарата.

Чувствительность тракта УНЧ, в пределах 20…50 мВ устанавливаем подбором резистора 5R18 узла А5. При этом двойной размах сигнала на выходе УНЧ, нагруженном на сопротивление 32 Ом, составит около 10 В.

Соединяем вход НЧ узла А5 с выходом УПЧ (узел А4). При этом мы услышим шум тракта ПЧ. После чего к левому по схеме выводу конденсатора 4С9 с выхода ГСС подаем сигнал промежуточной частоты (в нашем случае 5,0002 МГц) и окончательно подстраиваем контур УПЧ по максимуму сигнала.

Отключаем ГСС и к входу УПЧ подключаем реверсивный преобразователь частоты, узел A3. Сигнал от ГСС с частотой, лежащей в пределах одного из любительских диапазонов (этот же диапазон должен быть выбран и синтезатором частоты), подаем на вывод 4 узла A3 и окончательно подстраиваем его контур ПЧ конденсатором 3С13 по максимуму сигнала на выходе УНЧ. Чувствительность настроенного тракта должна быть не хуже 0,18 мкВ. Диапазон ручной регулировки усиления по ПЧ выбираем подбором резистора 4R13. а глубину АРУ — подбором резистора 4R37.

Теперь нам уже ничто не мешает подключить заблаговременно настроенный ДПФ (узел А2), проверить общую чувствительность приемного тракта трансивера с антенного входа и, подключив внешнюю антенну, испытать первый восторг от приема реальных сигналов радиолюбительских станций.

Настройку передающего тракта начнем с регулировки чувствительности микрофонного входа и адаптации его под реальный микрофон. При использовании электретного микрофона устанавливаем резистор 5R5, сопротивление которого зависит от рекомендуемого напряжения питания для конкретного типа микрофона (10…100 кОм) При использовании динамического микрофона резистор 5R5 на плату не устанавливаем. Подстройкой резистора 5R17 при произнесении перед микрофоном длинного "А" на выводе 9 узла А5 на экране подключенного к ней осциллографа добиваемся легкого ограничения сигнала. Затем вместо микрофона подключаем звуковой генератор. При подаче с выхода генератора ЗЧ на микрофонный вход сигнала с частотой 800 Гц выставляем такое напряжение НЧ при котором ограничение сигнала на выводе 9 узла А5 будет таким же. Порог срабатывания системы VOX устанавливаем резистором 5R44.

Подключаем осциллограф к точке if_out в месте соединения элементов 4VD33 и 4R90 узла А4. Балансный модулятор настраиваем по методике, неоднократно описывавшейся в радиолюбительской литературе Напряжение сигнала DSB в точке if_out при поданном на микрофонный вход НЧ сигнале не должно ограничиваться, однако при этом его величина находится на границе ограничения. Регулировка уровня напряжения DSB осуществляется подбором величины сопротивления 4R86, шунтирующего дроссель 4L9.

Контроль качества сигнала можно осуществить, подключив осциллограф к верхнему по схеме выводу конденсатора 3С2 узла A3. При правильно настроенном балансном модуляторе и усилителе DSB здесь мы будем наблюдать неискаженную синусоиду без следов амплитудной модуляции. Максимальный уровень величины сигнала получаем в этой же точке, подбирая конденсатор 3С15.

Следующий этап — контроль сигнала на выходе ДПФ (А2). Напряжение сформированного на рабочей частоте SSB сигнала на выходе ДПФ обычно лежит в пределах 300...500 мВ.

Подключив усилитель мощности, подбором резисторов 6R4, 6R5 добиваемся такой его чувствительности, чтобы при крайнем правом положении переменного резистора R2 (регулятора уровня мощности) максимальная выходная мощность в диапазоне 28 МГц составляла 8 Вт.

В заключение проверяем работу трансивера в телеграфном режиме, на чем работу по настройке его передающего тракта можно считать законченной.

Конструкция диска валкодера >"><<Скачать>>
Прошивки >"><<Скачать>>
Разводка проводников печатных плат >"><<Скачать>>

Алексей БЕЛЯНСКИЙ US2II
Радио 2001 № 1,2,3,4,5,6,7,8,10

Повторены практически все конструкции аналогичных уз-лов, публикации которых встречались в доступной радиолюбительской ли-тературе - поэтому, появился “творческий зуд” создать “чего-нибудь”, собрав “до кучи” наиболее оптимальные варианты. Главные требования - максимально возможная простота без ухудшения параметров, отсутствие уникальных ра-диоэлементов, повторяемость, возможность изготовления в домашних ус-ловиях. За основу была взята схемотехника наиболее отработанных и непло-хих по характеристикам трансиверов RA3AO и Урал 84М.

  • основной платы.
  • основной платы.

Был выбран вариант “одноплатной” конструкции, как наиболее удобной с точки зрения изготовления печатных плат и простоты монтажа в трансивере, хотя такое построение и имеет недостатки при получении мак-симально возможной чувствительности и несовместимости некоторых уз-лов. Как показал опыт, после повторения более десятка таких плат, харак-теристики трансивера получаются довольно высокие. При применении опи-сываемого синтезатора двухсигнальная избирательность при подаче сигна-лов с разносом 8 кГц на диапазоне 40м -94-96дБ. Чувствительность без УВЧ не хуже 0,ЗмкВ. Измерения проводились у UT5TC при очередной моей поездке на хамфест в Харьков. Использовался прибор «Динамика» - это именно та авторская конструкция «измерителя динамики», которую В. Скрыпник привозил на выставку в Москву и при описании конструкции прибора приводил таблицу «намеренной динамики» трансиверов, которые экспонировались. Трансивер с такой основной платой и самодельным синтезатором, в той когорте лучших образцов советской любительской техники был бы далеко не последним. Следует отметить, что при изготовлении этого TRX не ста-вилась задача получения максимально достижимых “цифир”.

Небольшое лирическое отступление, возможно немного объясняющее позицию автора к построению радиолюбительского самодельного трансивера.

Несколько ра-нее проводил «обширные изыскания» в направлении получения макси-мально достижимого динамического диапазона приемника. В качестве гетеродина (для получения минимально возможного “шума”) были пере-пробованы более десятка вариантов от генераторов на полевых, биполярных транзисторах до нувисторов, от катушки с «воженным серебром» до коаксиалов и кварцев с «уводом», генерирующих как на основной частоте, так и на частотах более 200МГц с последующим делением. В итоге был создан некий «монстр» с чувствительностью порядка 0,2мкВ и двухсигнальной из-бирательностью -104дБ. С чувством глубокого удовлетворения в течение нескольких лет вращались ручки этого трансивера, но «подул ветер пере-мен» и настали новые времена. Начала появляться «буржуйская техника» и у советских радиолюбителей. Незамедлительно последовали споры - «что лучше, что хуже», с чаще всего встречающимся выводом - «за что боро-лись то»? После того, как удалось покрутить ручки некоторых экземпляр-чиков фирм ICOM, KENWOOD и YAESU, побывать на радиолюбительской выставке «там за бугром», немного «поковырять» эту технику - чувство глу-бокой удовлетворенности стало рассеиваться. Возникло два основных воп-роса - зачем советским радиолюбителям максимально достижимая динами-ка и кому выгодно, чтобы частота в трансивере постоянно «куда-то стреми-лась» и невозможно было спокойно работать цифровыми видами связи. И еще одна не совсем ясная ситуация - отсутствие популярности 50-100Вт транзисторных ШПУ, к которым уже давно пришли все фирмы, занимаю-щиеся выпуском подобной техники. У нас - или ламповый выходной каскад: соответственно - ручки постоянно крути-верти (в эфире по этому поводу постоянное длительное “А”, пока все стрелки не упрутся вправо), отсут-ствие режима “кроссбенд”, “сплит” или маломощный транзисторный ШПУ на транзисторах совсем не предназначенных для работы на частотах 1,5-30 МГц. Второй случай вынуждает работать с постоянно включенным (часто шумящим) дополнительным «громкоговорителем» (читай - ламповым УМом), а так как транзисторы в ШПУ чаще всего разработаны для работы на частотах более 50-100МГц, то окружающие телезрители нашего брата «сильно любят» и при каждой встрече «снимают шляпу». В итоге моё отношение ко всяким «супер-динамикам», «супер-малошумящим» ГПД с делениями и остальным «супер-пупер» растаяло и появилось стойкое убеждение в том, что в первую очередь трансивер должен быть удобным и стабильным в пользовании. И только потом следует вспоминать о «динамике».

Один из определяющих факторов при выборе схемотехники TRX - это повторяемость конструкции и доступность элементной базы. В предла-гаемом варианте основной платы отсутствуют какие-либо дефицитные или незаменимые элементы. Возможная чувствительность с входа платы, кото-рую можно достичь без тщательной отладки каждого каскада 0,2-0,3мкВ. Чувствительность, которую удалось получить при тщательном подборе эле-ментов и настройке не хуже 0,1мкВ. Данные здесь приблизительные, так как нет в распоряжении прецизионного прибора для измерения малых значений чувствительности. Измерения проводились с помощью калиброванного кварцевого генератора с питанием от батареек и ступенчатого аттенюатора. Те радисты, которые действительно пытались измерять «чутье» лучше 0,5мкВ, знают насколько это сложная задача без соответствующих приборов. Максимальная двухсигнальная избира-тельность, которую удалось достичь при подборе элементов - 98дБ. Эти значения зависят от многих составляющих, например качества диодов в смесителе, их подбора, качества отладки и типа примененного синтезатора, затухания вносимого кварцевым фильтром и его согласовании и т.д.

Основную плату можно разбить на узлы:

  • Отключаемый широкополосный УВЧ;
  • Обратимый смеситель;
  • Пас-сивный диплексер;
  • Согласующий обратимый каскад;
  • Основной квар-цевый фильтр;
  • Линейка УПЧ;
  • Детектор, УНЧ и узел АРУ;
  • Опорный кварцевый генератор.

Входного УВЧ, смесителя и диплексера на основной плате.

Усилитель высокой частоты (VT5) с отрицательной цепью обратной связи Х-типа (6). Один из лучших транзисторов для усилителя КТ939А. В плату был заложен КТ606А, как более дешевый и распространенный. Не нужно сильно переживать о том, что УВЧ ухудшит динамический диапазон RX. Во-первых, УВЧ отключаемый, при надобности его можно всегда вык-лючить, во-вторых, включение его обычно требуется только на самых тихих диапазонах во время слабого прохождения, когда все станции слышны с не-большим уровнем и вряд ли какая-либо из станций «перегрузит» этот кас-кад. Настройка каскада зависит от потреб-ности пользователя. В зависимости от типа транзистора и его режима, можно обеспечить или максимально возможную чувствительность или мини-мальное воздействие этого каскада на верхнюю “планку” динамического диапазона.

Схемотехника смесителя за-имствована из (4). Основные преимущества этого варианта - обратимость, максимально возможный динамический диапазон (Дбл до 140дБ) при не-большом уровне гетеродина (1.4В). Конечно, по количеству деталей он сложнее и дороже обычно применяемых радиолюбителями смесителей. Но не нужно забывать, что этот узел определяет качество работы всего прием-ника и экономия на нем просто бессмысленна. От тщательности настройки смесителя зависит и то, как приемная часть будет воспринимать эфир, что можно будет там услышать и то, сколько «мусора» будет выдано на переда-чу, насколько сложными придется делать полосовые фильтры, дабы была возможность работать во время телевизионного приема соседями. Часть де-лителя D1 пришлось установить непосредственно у смесителя, чтобы обеспечить «противофазность» сигналов непосредственно на входе плеч VT1,VT2 и VT3,VT4. Смеситель работоспособен с различными типами диодов. Мож-но предположить, что наилучшими будут диоды типа Шоттки. Из всего оте-чественного перечня доступны лишь КД922. Переход на КД512, КД514 сколько-нибудь заметного ухудшения параметров не вызывает, но это при условии подбора диодов.

Для согласования смесителя с пос-ледующими каскадами в этой плате применен обычный “классический” диплексер L1,L2,C7,C8. В принципе, можно этот узел и не ус-танавливать. Неплохое согласование можно получить за счет подбора режи-ма VT15 КП903. Применение диплексера позволяет получить максимально возможную чувствительность только при применении высокодобротных катушек, если и не избавиться полностью, то значи-тельно понизить уровень пораженных частот. Двунаправленный каскад VT15 должен иметь минимально возможный коэффициент шума, не ухуд-шать динамический диапазон смесителя и компенсировать затухание вно-симое смесителем и ДПФами. Многочисленное применение этого каскада показало его эффективную работу и высокие характеристики. Наиболее распространенный и качественный для этого каскада транзистор типа КП903А. Можно применять КП307, КП303, КП302 с максимальным значе-нием крутизны. Далее сигнал через трансформатор Т3 поступает на кварце-вый фильтр ZQ1. Подробное описание фильтров ниже по тексту. В качестве ZQ1 применен лестничный фильтр. Фильтр согласуется с трактом ПЧ через резонансный контур L3. Транзистор VT7 включается при работе на передачу. По второму затвору происходит регулировка мощности. Линейка УПЧ собрана на транзисторах КП327. Схемотехника заимствована у RA3AO. На мой взгляд - это один из лучших вариантов такого тракта. Здесь можно использовать двух-затворные полевые транзисторы и других типов. Наилучшими (из тех, которые удалось проверить) оказались BF980, импортные транзисторы других типов не проверялись из-за их отсутствия на момент отработки конструкции. Для регулирования усиления использовано свойство насыще-ния проходных характеристик “полевиков” по первому затвору при фикси-рованном и малом напряжении на втором затворе. Этот способ обес-печивает существенно более линейную характеристику при меньших иска-жениях сигнала, чем традиционный, по второму затвору (2). Для глубокой регулировочной характеристики применено четыре каскада. Излишнее усиление убирается путем шунтирования контуров ПЧ резисторами R38 и R46. Следует выбрать для VT8 транзистор с минимальным коэффициентом шума. VT9, VT10, VT11 можно заменить на КП350. Преиму-щество КП327 перед КП350 и КП306 в Кш, они не боятся статики (до 15V) и не имеют покрытия из желтого металла.

опорного генератора, тракта ПЧ на основной плате.

Детектор - пассивный ключевой на транзисторе VT12. Сопротив-ление канала этого транзистора периодически изменяется под воздействи-ем на затвор напряжения с близкой к прямоугольной форме частоты Fоп. Сигнал ЗЧ с выхода детектора фильтруется цепью R61, R62, C52, C51. По-лоса сигнала ограничивается снизу частотой около 200Гц и сверху частотой около 3кГц (2). Наверное - это единственный узел на этой плате, который немного "портит жизнь". Точнее не он, а опорный генератор. Уровень ВЧ напряжения для работы детектора достаточно высокий и в случае неудачной ПЧ можно получить пару "лишних поражёнок". Так же, как и у автора (2) применена микросхема К157УД2 в качес-тве предварительного УНЧ и усилителя - выпрямителя АРУ. Вместо нее мо-жно применить два операционных усилителя. Ограничение полосы пропус-кания сверху можно регулировать цепочкой R63, С58. К выходу предвари-тельного УЗЧ подключен вход усилителя АРУ D1.1A. Транзистор VT13 мо-жет служить для различных целей, он может включать или выключать цепи АРУ по желанию оператора, если такой режим потребуется. Здесь этот ключ используется для блокировки АРУ во время передачи, чтобы не искажались показания S-метра, который в этом режиме показывает выходную мощность передатчика.

АРУ и УНЧ на основной плате.

Усилитель-выпрямитель АРУ остался без изменения. В автор-ском варианте наблюдалось “дребезжание” АРУ, поэтому изменены вре-менные характеристики “быстрой” цепочки. Емкость С74 потребовалось увеличить до 0,047-0,1mF. В цепь регулировки усиления по ПЧ через диоды VD19 и VD18 можно подавать напряжение с ручных регуляторов, например - “регулировка усиления ПЧ”, “уровень самопрослушивания”. В качестве оконечного УНЧ использована микросхема К174УН14. Схема включения типовая. Полоса пропускания сверху определяется це-почкой С68, R80. Выход УНЧ можно нагружать на динамик или через дели-тель R84, R85 на головные телефоны. Коэффициент усиления можно регу-лировать резистором R17.

Поддавшись стремлению обеспечить “одноплатность” всей конструкции трансивера, решено на основной плате развести опорный гете-родин . Это, конечно же, усложнило ситуацию с “пораженными точками”. Некоторых из них можно было бы избежать совсем, если бы опорный гете-родин был выполнен в отдельном экранированном отсеке. При удачной ПЧ количество точек не превышает 3...5 на все девять диапазонов. Возможно от них избавиться практически совсем, если повозиться с дополнительными заземлениями шины питания микросхемы и металлизации вокруг этого узла. При разводке платы были приняты все возможные меры для сведения к минимуму наводки от опорника - этот узел расположен компактно в самом углу платы, оставлено максимальное количество фольги "земли" вокруг него с обеих сторон платы, со стороны установки элементов можно накрыть его экранирующей коробочкой из лужёной жести, дорожки питания можно перерезать и вводить дополнительные развязывающие и фильтрующие элементы по питанию, место на плате для них оставлено. Как показал опыт повторения - основное излучение дают дросселя, которые служат для сдвига частоты. Нужно стремиться к получению их минимальной индуктивности. Т.к. на неработающей индуктивности более 20-30мкГн может развиваться ВЧ напряжение более 15В.

Настройка платы - типовая, она неоднократно описана в радиолю-бительской литературе. Номиналы элементов R1 и С2 зависят от того, ка-кой узел использован в качестве гетеродина. Если это синтеза-тор, то R1 = 470...68Ом, С2 может иметь номинал от 68пФ до 10нф. Качество согласования заметно на слух по минимальному количеству “шумовых точек” от синтезатора. Элементы LI, L2, С7, С8 настраивают в резонанс на частоту ПЧ. Резистор R19 может иметь номинал 50...200Ом. Качество согласования этого узла определяет общее уменьшение уровня “пораженок” и небольшое увеличение чувствительности. Согласования ZQ1 добиваются резисторами R22, R26, Rф и подбором количества витков Lcb. Подчисточный фильтр ZQ2 согласуют резисторами R52 и R54. Общее усиление тракта ПЧ можно подобрать при помощи R28, R38, R46. Резисторы R39, R47, R53, R60 влияют на Кус и определяют качество работы АРУ покаскадно.

Об изготовлении трансформатора Т1

Были опробованы ферриты проницаемостью 400...2000, диаметр колец - 7...12мм, скрутка проводов и без скрутки. Вывод - все работает. Главное требование - аккуратность изготовления, отсутствие замыкания обмотки на феррит и обязательная симметрия плеч. Диоды в смесителе следует подобрать хотя бы по сопротивлению открытого перехода и емкости. Транзисторы VT1, VT2; VT3, VT4 необходи-мо подобрать как комплиментарные пары. Или хотя бы пары однотипных транзисторов, т.к. сложно найти КТ368 и 363 с одинаковым Кус. Как правило у КТ368 Кус. намного выше чем у КТ363. В эмиттере VT5 номиналы R86 и С9 в цепочке подбираются. Они зависят от типа транзистора. Для КТ606 R86 в пределах 68... 120Ом, а С9 следует настроить по максимуму усиления на 28 МГц (обычно 1нФ), с помощью R87 можно подобрать ток через тран-зистор, например по максимальной чувствительности. Транзисторы КП327 припаиваются снизу платы.



В продолжение темы:
Инструменты и приспособления

Завтрак – самый важный приём пищи, и это уже давным-давно ни для кого не секрет. Пользу завтрака признают как врачи, так и диетологи. Они пришли к мнению, что именно с утра,...