Бестрансформаторные блоки питания_1 - Блоки питания (бестрансформаторные) - Источники питания. Бестрансформаторный блок питания

Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Неполярный конденсатор, включенный в цепь переменного тока, ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла.

Для расчета емкости гасящего конденсатора используется следующая формула:

С — емкость балластного конденсатора (Ф); Iэфф — эффективный ток нагрузки; f — частота входного напряжения Uc (Гц); Uс — входное напряжение (В); Uн — напряжение нагрузки (В).

Для удобства расчетов, можно воспользоваться онлайн калькулятором

Конструкция бестрансформаторных источников и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

  • Похожие статьи
  • - Применение в переносной аппаратуре операционных усилителей (ОУ) сразу же ставит задачу - каким обра­зом запитать их двуполярным напряжением +15 В. По­добный вопрос возникает потому, что в справочных ма­териалах параметры большинства ОУ приведены именно для этих питающих напряжений, и у многих...
  • - Габариты и масса высоковольтных трансформаторов из-за необходимости обеспечения электрической прочности становятся очень большими. Поэтому удобнее использовать в высоковольтных маломощных источниках питания умножители напряжения. Умножители напряжения создаются на базе схем выпрямления с емкостной...
  • - Приемник может быть перестроен в диапазоне 70...150 МГц без изменения номиналов подстроечных элементов. Реальная чувствительность приемника около 0,3 мкВ, напряжение питания 9 В. Следует заметить, что напряжение питания МС3362 - 2...7 В, а МС34119 2...12 В, поэтому МС3362 питается через...
  • - Для расчёта стабилизатора, как правило, используются только два параметра - Uст (напряжение стабилизации) , Iст (ток стабилизации), при условии что ток нагрузки равен или меньше тока стабилизации. Для простого расчета стабилизатора на примере будем использовать следующие параметры: Входное...
  • - Приемник предназначен для приема сигналов в диапазоне ДВ(150кГц...300кГц). Главная особенность приемника в антенне, которая имеет большую индуктивность чем обычная магнитная антенна. Что позволяет применить емкость подстроечного конденсатора в пределах 4...20пФ, а так же такой приемник обладает...

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:


бестрансформаторный блок питания своими руками

Это достаточно простая схема бестрансформаторного блока питания . Устройство выполнена на доступных элементах и в предварительной наладке не нуждается. В качестве диодного выпрямителя использован готовый мост серии КЦ405В (Г), также можно использовать любые диоды с напряжением не менее 250 вольт.

Электросхема показана на рисунке:


Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.


После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой.


Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех . Устройство работает очень стабильно , но имеет всего один недостаток - малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи.

Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже:

Питать низковольтную электро- и радиоаппаратуру выгоднее и проще от сети. Для этого наиболее приемлемы трансформаторные блоки питания, поскольку они безопасны в эксплуатации. Однако интерес к бестрансформаторным блокам питания (БТБП) со стабилизированным выходным напряжением не ослабевает. Одна из причин - сложность изготовления трансформатора. А вот для БТБП он не нужен - необходим лишь правильный расчет, но как раз это и пугает малоопытных начинающих электриков. Эта статья поможет сделать расчет и облегчит конструирование бестрансформаторного блока питания.

Упрощенная схема БПТП приведена на рис. 1. Диодный мост VD1 подключен к сети через гасящий конденсатор С гас, включенный последовательно с одной из диагоналей моста. Другая диагональ моста работает на нагрузку блока - резистор R н. Параллельно нагрузке подключены фильтрующий конденсатор С ф и стабилитрон VD2.

Расчет блока питания начинают с задания напряжения U н на нагрузке и силы тока I н. потребляемого нагрузкой. Чем больше будет емкость конденсатора С гас, тем выше энергетические возможности БПТП.

Расчет емкостного сопротивления

В таблице приведены данные по емкостному сопротивлению Х с конденсатора С гас на частоте 50 Гц и среднему значению тока I ср, пропускаемого конденсатором С гас, вычисленные для случая, когда R н =0, то есть при коротком замыкании нагрузки. (Ведь к этому аномальному режиму работы БТБП не чувствителен, и в этом еще одно огромное преимущество перед трансформаторными блоками питания.)

Иные значения емкостного сопротивления Х с (в килоомах) и среднего значения тока I ср (в миллиамперах) можно вычислить по формулам:


С гас - емкость гасящего конденсатора в микрофарадах.

Если исключить стабилитрон VD2, то напряжение U н на нагрузке и ток I н через нее будет зависеть от нагрузки R н. Подсчитать эти параметры легко по формулам:



U н - в вольтах, R н и Х н - в килоомах, I н - в миллиамперах, С гас - в микрофарадах. (Далее в формулах используются те же единицы измерения.)

С уменьшением сопротивления нагрузки напряжение на ней тоже уменьшается, причем по нелинейной зависимости. А вот ток, проходящий через нагрузку возрастает, правда, весьма незначительно. Так, например, уменьшение R н с 1 до 0,1 кОм (ровно в 10 раз) ведет к тому, что U н снижается в 9,53 раза, а ток через нагрузку увеличивается всего лишь в 1,05 раза. Эта "автоматическая" стабилизация тока выгодно отличает БТБП.от трансформаторных источников питания.

Мощность Р н на нагрузке, вычисляемая по формуле:



с уменьшением R н снижается почти столь же интенсивно, как и U н. Для того же примера потребляемая нагрузкой мощность уменьшается в 9,1 раза.

Поскольку ток I н нагрузки при сравнительно небольших значениях сопротивления R н и напряжения U н на ней меняется крайне мало, на практике вполне допустимо пользоваться приближенными формулами:



Восстановив стабилитрон VD2, получим стабилизацию напряжения U н на уровне U ст - значения практически постоянного для каждого конкретного стабилитрона. И при небольшой нагрузке (большом сопротивлении R н) станет выполняться равенство U н =U ст.

Расчет сопротивления нагрузки

До каких же пределов можно уменьшать R н, чтобы равенство U н =U ст было справедливо? До тех, пока выполняется неравенство:



Следовательно, если сопротивление нагрузки окажется меньше рассчитанного R н, напряжение на нагрузке уже не будет равно напряжению стабилизации, а окажется несколько меньше, поскольку ток через стабилитрон VD2 прекратится.


Расчет допустимого тока через стабилитрон

А теперь определим, какой ток I н будет течь через нагрузку R н и какой ток - через стабилитрон VD2. Понятно, что



По мере уменьшения сопротивления нагрузки потребляемая ею мощность P н =I н U н =U 2 ст /R н возрастает. А вот средняя потребляемая БПТП мощность, равная



остается неизменной. Объясняется это тем, что ток I ср разветвляется на два - I н и I ст - и, в зависимости от сопротивления нагрузки, перераспределяется между R н и стабилитроном VD2, причем так, что чем меньше сопротивление нагрузки R н, тем меньший ток идет через стабилитрон, и наоборот. Значит, если нагрузка мала (или вовсе отсутствует), стабилитрон VD2 будет находиться в наиболее тяжелых условиях. Вот почему снимать нагрузку с БПТП не рекомендуется, иначе весь ток пойдет через стабилитрон, что может привести к выходу его из строя.

Амплитудное значение напряжения сети равно 220·√2=311(B). Импульсное значение тока в цепи, если условно пренебречь конденсатором С ф, может достигать



Соответственно, стабилитрон VD2 должен надежно выдерживать этот импульсный ток при случайном отключении нагрузки. Не следует забывать и о возможных перегрузках по напряжению в осветительной сети, составляющих 20...25% от номинала, и рассчитывать ток, проходящий через стабилитрон при отключенной нагрузке с учетом поправочного коэффициента 1,2...1,25.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать U ст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В - если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Расчет однополупериодного блока

Наряду с двухполупериодным выпрямителем в БТБП иногда применяют и простейший однополупериодный (рис. 4). В таком случае его нагрузка R н питается лишь положительными полупериодами переменного тока, а отрицательные проходят через диод VD3, минуя нагрузку. Поэтому средний ток I ср через диод VD1 будет вдвое меньше. Значит при расчете блока вместо Х с следует брать в 2 раза большее сопротивление, равное



а средний ток при замкнутой накоротко нагрузке будет равен 9,9·πС гас =31,1 С гас. Дальнейший расчет такого варианта БПТП ведут совершенно аналогично предыдущим случаям.

Расчет напряжения на гасящем конденсаторе

Принято считать, что при напряжении сети 220В номинальное напряжение гасящего конденсатора С гас должно быть не менее 400В, то есть примерно с 30-процентным запасом по отношению к амплитудному сетевому, поскольку 1,3·311=404(В). Однако в некоторых наиболее ответственных случаях его номинальное напряжение должно быть 500 и даже 600В.

И еще. Подбирая подходящий конденсатор С гас, следует учитывать, что применять в БТБП конденсаторы типа МБМ, МБПО, МБГП, МБГЦ-1, МБГЦ-2 нельзя, так как они не рассчитаны на работу в цепях переменного тока с амплитудным значением напряжения, превышающим 150В.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000В.

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора С ф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3...10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10...30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора С ф должно быть не менее U ст ·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:


Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора С ф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм...1МОм, включают параллельно конденсатору С гас. Этот резистор нужен для ускорения разрядки конденсатора С гас после отключения устройства от сети. Другой - балластный - сопротивлением 10...51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором С гас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Какие взять диоды

Функцию двухполупериодного выпрямителя БТБП по схемам на рис. 1...3 могут выполнять диодные сборки серии КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре отдельных диода, включенных по схеме моста, например серий КД105 с индексами Б, В или Г, Д226 Б или В - до 300 мА, КД209 А, Б или В - до 500...700 мА, КД226 В, Г или Д - до 1,7 А.

Диоды VD1 и VD3 в БТБП по схеме на рис. 4 могут быть любыми из перечисленных выше. Допустимо также использовать две диодные сборки КД205К В,Г или Д в расчете на ток до 300 мА либо КД205 А,В,Ж или И - до 500 мА.

И последнее. Бестрансформаторный блок питания, а также аппаратура, подключенная к нему, подключены в сеть переменного тока непосредственно! Поэтому они должны быть надежно за-изолированы снаружи, скажем, размещены в пластмассовом корпусе. Кроме того, категорически запрещается "заземлять" какой-либо из их выводов, а также вскрывать корпус при включенном устройстве.

Предлагаемая методика расчета БПТП опробована автором на практике в течение ряда лет. Весь расчет ведется, исходя из того, что БПТП - это по существу параметрический стабилизатор напряжения, в котором роль ограничителя тока выполняет гасящий конденсатор.

Журнал «САМ» №5, 1998 год

Когда мы имеем дело с устройствами, которые работают от источника питания с малым напряжением, у нас обычно есть несколько вариантов как их запитать. Помимо простых, но дорогих и громоздких трансформаторов можно использовать бестрансформаторный блок питания .

Например, можно получить 5 вольт из 220 вольт с применением гасящего резистора или используя реактивное сопротивление конденсатора. Однако, такое решение, подходит только для устройств, которые имеют очень малый ток потребления. Если нам нужен больший ток, например, для питания светодиодной цепи, то здесь мы столкнемся с ограничением по производительности.

Если какое-либо устройство потребляет большой ток и принципиально необходимо запитать его от сети 220 вольт, то есть одно оригинальное решение. Оно состоит в использовании для питания только части синусоиды во время ее роста и падения, т.е. в тот момент, когда напряжение сети будет равным или меньше, требуемого значения.

Описание работы бестрансформаторного блока питания

Особенность схемы заключается в управление моментом открытия транзистора MOSFET — VT2 (IRF830). Если текущее значение входного сетевого напряжения ниже, чем напряжение стабилизации стабилитрона VD5 минус падение напряжения на резисторе R3, то транзистор VT1 будет закрыт. Благодаря этому через резистор R4 идет положительное напряжение на транзистор VT2, в результате чего он находится в открытом состоянии.

Через транзистор VT2 в данный момент протекает ток и текущее значение сетевого напряжения заряжается конденсатор С2. Конечно, напряжение в сети падает до нуля, поэтому необходимо в цепь включить диод VD7, который препятствует разряду конденсатора обратно в схему блока питания.

Когда входное напряжение сети превышает пороговое, проходящий через стабилитрон VD5 ток приводит к открытию транзистора VТ1. Транзистор своим коллектором шунтирует затвор транзистора VT2, в результате VТ2 закрывается. Таким образом, конденсатор С2 заряжается только необходимым напряжением.

Мощный транзистор VТ2 открывается только при низком напряжении, так что его общая рассеивающая мощность в схеме очень мала. Безусловно, стабильность работы блока питания зависит от управляющего напряжения стабилитрона, поэтому, например, если мы хотим питать схему с микроконтроллером, то выход необходимо дополнить небольшим .

Резистор R1 защищает цепь и уменьшает скачок напряжения при первом включении. Стабилитрон VD6 ограничивает максимальное напряжение на управляющем электроде транзистора VT2 в районе 15 вольт. Естественно при переключении транзистора VТ2 возникают электромагнитные помехи. Чтобы избежать передач помех в электросеть, во входной цепи используется простой LC фильтр, состоящий из L1 и С1 компонентов.



В продолжение темы:
Балкон и лоджия

С древних времен наши предки пытались угадать в сновидениях перст судьбы и придавали снам колоссальное значение, наделяя каждый увиденный предмет или событие символичным...

Новые статьи
/
Популярные