Что в световой микроскоп можно увидеть? Выбираем микроскоп для детей и растим гениев Что можно разглядеть в микроскоп.

Строение бактерий много проще и однообразнее, чем строение простейших, и здесь нет такого богатства форм, как у инфузорий. Однако это единообразие и простота строения делают бактерии очень хорошей моделью для многих опытов. Еще проще устроены, и поэтому еще лучше, как модель, вирусы. Но о них - после, в особой главе.

Чтобы посмотреть на живые бактерии, нам с вами придется поискать более сильные и сложные микроскопы, чем те, в которые можно рассмотреть инфузории. Без увеличения в 600-800 раз тут не обойтись.

Зато источник, в котором всегда можно найти множество разнообразных бактерий, доступен всегда. Это - ваш собственный рот. Соскребите зубной налет и размешайте его в капельке воды или слюны на предметном стекле. Этого вам хватит для ознакомления с основными формами бактерий.

Если вы посмотрите на них в обычный микроскоп, употребляющийся в медицинских и биологических лабораториях, то, наверное, разочаруетесь. Будут видны сероватые, с нечеткими контурами, очень маленькие палочки, шарики, нити. Разве их сравнить с причудливыми, как тропические рыбы, инфузориями?

В так называемый фазово-контрастный микроскоп вы сможете увидеть больше. Отличие этого микроскопа от обычного сводится к тому, что частицы, одинаково прозрачные для световых лучей, но с разной плотностью выглядят здесь по-разному: более плотные - темнее, менее плотные - светлее.

Интересно наблюдать живых бактерий в так называемый темнопольный микроскоп. Лучи света здесь идут не через объект наблюдения в объектив микроскопа, а сбоку. Вы, наверное, видели, как ярко светятся пылинки в солнечном луче, пробившемся из-за штор или ставни в темной комнате.

Примерно так же выглядят в темнопольном микроскопе и бактерии - как светлые точки на угольно-черном или коричневатом фоне. Общие очертания их при этом немного смазываются, но зато хорошо видно движение бактерий. А характер движения позволяет распознавать возбудителей некоторых болезней.


Фото: U.S. Geological Survey


Фото: Umberto Salvagnin

Иные бактерии не имеют жгутиков, нужных для передвижения. Но это не значит, что в поле зрения микроскопа они будут неподвижны. Нет, вам покажется, что бактерии движутся, причем все разом, как муравьи в развороченном муравейнике. Однако это - не самостоятельное, активное движение микроба, а так называемое броуновское движение.

Броуновское движение любых мелких частиц, плавающих в жидкости (отнюдь не только микробов), - следствие беспорядочного теплового движения молекул этой жидкости. Молекулы давят на частицу со всех сторон, и она, так сказать, «топчется на месте».

Зато если под микроскопом подвижные бактерии, то вы увидите, как быстро они пересекают поле зрения, замирают на месте, а затем снова устремляются дальше. Особенно интересно наблюдать за спирохетами, похожими на ожившую спираль от электрической плитки. Они настолько тонки, что под обычным микроскопом живую спирохету трудно разглядеть.

В темнопольном микроскопе они видны гораздо лучше. Вы, наверное, найдете их в зубном налете; только хорошенько приглядитесь - лучше всего искать спирохет во время их движения. Они или плывут, извиваясь, как змейки, или дергаются на месте и даже складываются пополам.

Живых бактерий рассматривать в микроскоп не столь удобно, как мертвых и окрашенных.

С каким увеличением желательно приобрести микроскоп, чтобы увидеть в АКЧ микроорганизмы?

Детали строения этих организмов были изучены именно на окрашенных препаратах. Чтобы окрасить бактерии, нужно нанести их на стекло (как говорят, сделать мазок), высушить его, прогреть на пламени горелки (чтобы клетки впоследствии лучше подкрасились) и капнуть на мазок каплю специальной краски.

Если вы попадете в микробиологическую лабораторию, то там, конечно, найдется набор разнообразных красок. Одна из самых распространенных - метиленовая синяя. Так как она входит в состав чернил для авторучки, то за неимением лучшего можно брызнуть на мазок каплю чернил. Через 6-8 минут краску надо смыть водой и высушить мазок.

В зависимости от того, какой вид бактерий был окрашен, вы увидите под микроскопом шарики или палочки - прямые, изогнутые или похожие на запятую. Из палочек и шариков могут образовываться цепочки. Шарики иногда объединены в группы по четыре, восемь и шестнадцать. У некоторых палочек на концах есть утолщения вроде спичечной головки. Таковы основные формы бактерий.

Однако столь краткое описание напоминает слова одного философа, который определил человека как двуногое без перьев. У бактерий, даже окрашенных самым простым способом, можно найти довольно много особенностей их строения. О некоторых из этих особенностей мы здесь расскажем.

Палочковидных бактерий в природе больше всего. Само слово «бактерия» по-гречески значит «палочка». Один из самых распространенных микробов, так называемая кишечная палочка, имеет форму длинного овала. Кишечная палочка обитает в толстых кишках; в одном грамме человеческих испражнений может содержаться 2-Ъ миллиарда этих микроорганизмов (представляете, сколько их попадает во внешнюю среду в населенной местности!).

По форме от кишечной палочки неотличимы и болезнетворные микробы - возбудители дизентерии, тифа, паратифа. Возбудитель сибирской язвы - тоже палочка, но с обрубленными концами. Бактерии сибирской язвы часто располагаются в виде длинных нитей-цепочек.

Форму палочки имеют возбудители столбняка, газовой гангрены и многих других болезней.

Иногда можно встретить название «холерная запятая». Действительно, так называемые вибрионы похожи на запятую. К ним относится и возбудитель холеры. Только не представляйте себе холерную запятую в виде головастика, как любил ее рисовать в «Окнах РОСТА» Маяковский. Это скорее изогнутая палочка равномерной толщины. Строго говоря, это даже не палочка, а отрезок спирали, один ее неполный виток.

Шаровидные бактерии называются кокками. Кокки, собранные в гроздья, напоминающие виноградные, носят название стафилококков. Некоторые из них, попадая в ранки или царапины, служат причиной нагноений и вызывают тяжелые заболевания у детей раннего возраста.

Много несчастий причиняют человеку стрептококки - микробы, похожие на нитки бус или четки. Они вызывают и рожистое воспаление, и ангину, и даже заболевание сердца - эндокардит. Коккам, расположенным по два - диплококкам, - человек обязан такими болезнями, как менингит, воспаление легких, гонорея.

В окрашенном мазке легко определить форму бактерий, но изучить строение бактериальной клетки во всех деталях невозможно. И если мы все-таки уже много знаем о строении бактерий, то этому помогли специальные методы их окраски и изучение их под электронным микроскопом.

  • микроскопический метод: световая, фазово-контрастная, флуоресцентная, электронная;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных);
  • молекулярно-генетический метод (ПЦР — полимеразная цепная реакция)
  • серологический метод — выявления антигенов микроорганизмов или антител к ним;

Способы приготовления препаратов для микроскопии. При помощи светового микроскопа можно изучать микроорганизмы, как в живом, так и в окрашенном состоянии. При исследовании микробов в живом состоянии можно получить представление о размерах, форме и характере их движения. Иногда внутри живой клетки видны блестящие, сильно преломляющие свет гранулы и споры. Для изучения микробов в живом состоянии готовят препараты висячей и раздавленной капли. Для приготовления препарата висячей капли (рис. 19) бактериологической петлей в центр покровного стекла наносят небольшую каплю исследуемого материала, суспендированного в жидкости (изотонический раствор хлорида натрия, мясопептонный бульон). Затем берут специальное стекло с луночкой в центре и края ее смазывают вазелиновым маслом. Луночкой предметного стекла накрывают каплю исследуемого материала на покровном стекле так, чтобы капля находилась в центре луночки. Слегка прижимают предметное стекло и быстро переворачивают. При правильном приготовлении препарата капля свисает в луночку. Вазелиновое масло предохраняет ее от высыхания.

Препарат раздавленной капли готовят нанесением капли суспендированного в жидкости материала на предметное стекло, которое затем накрывают покровным.

СВЕТООПТИЧЕСКАЯ МИКРОСКОПИЯ

Для световой микроскопии применяют микроскоп - оптический прибор, позволяющий наблюдать мелкие объекты. Увеличение изображения достигают системой линз конденсора, объектива и окуляра. Конденсор, расположенный между источником света и изучаемым объектом, собирает лучи света в поле микроскопа. Объектив создаёт изображение поля микроскопа внутри тубуса. Окуляр увеличивает это изображение и делает возможным его восприятие глазом.

Микроскопия в домашних условиях

Предел разрешения микроскопа (минимальное расстояние, на котором различимы два объекта) определяется длиной световой волны и апертурой линз. Теоретически возможный предел разрешения светового микроскопа равен 0,2 мкм; реальное разрешение можно повысить за счёт увеличения апертуры оптической системы, например путём увеличения коэффициента преломления. Коэффициент преломления (иммерсии) жидких сред больше коэффициента преломления воздуха («=1,0), при микроскопировании применяют несколько иммерсионных сред: масляную, глицериновую, водную. Механическая часть микроскопа включает штатив, предметный столик, макро- и микрометрический винты, тубус, тубусодержатель.

Темнопольная микроскопия позволяет наблюдать живые бактерии. Для этого используют темнопольный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Перед началом работы свет устанавливают и центрируют по светлому полю, затем светлопольный конденсор удаляют и заменяют соответствующей системой (например, ОИ-10 или ОИ-21). Препарат готовят по методу «раздавленной капли», делая его как можно более тонким (толщина покровного стекла не должна быть толще 1 мм). Наблюдаемый объект выглядит как освещенный на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. В качестве иммерсионной жидкости пригодно вазелиновое масло.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты за счёт повышения их контрастности. При прохождении света через окрашенные объекты происходит изменение амплитуды световой волны, а при прохождении через неокрашенные - фазы световой волны, что используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. Для повышения контрастности фазовые кольца покрывают металлом, поглощающим прямой свет, не влияя на сдвиг фазы. В оптической системе микроскопа применяют специальный конденсор с револьвером диафрагм и центрирующим устройством; объективы заменяют на иммерсионные объективы-апохроматы.

Поляризационная микроскопия позволяет получать изображения неокрашенных анизотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганизмов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях.

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии. Метод применяют для получения контрастного трёхмерного изображения неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микроскопе; один луч проходит через объект, другой - мимо него. Оба луча соединяются в окуляре и интерферируют между собой.

Люминесцентная микроскопия. Метод основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра. Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюорохромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта.

В списке хороших подарков на день рождения шести-семилетнему "почемучке" микроскопы стоят в первых рядах. Как выбрать первый детский микроскоп? Что с ним делать дальше? На эти и другие непростые вопросы попробуем ответить вместе.

Если вы заглянете в любой реальный или виртуальный магазин развивающих игрушек, то среди множества товаров непременно отыщете и детские микроскопы. Кажется, что мода на них возникла совсем недавно, в эпоху тотального "развивания" детворы едва ли не с пеленок. Но это не совсем так. Подобные игрушки были известны еще в XVIII веке. Тогда их называли "блошиными стеклами". В яркую картонную трубочку длиной около 2 см вставлялась с одной стороны двояковыпуклая линза, а с другой – плоское стекло с прикрепленным к нему объектом. Например, блохой (отсюда и "блошиное стекло"). Стоили такие игрушки недорого и пользовались большой популярностью. Современные детские микроскопы тоже весьма популярны.

Для чего малышу микроскоп?

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все: из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские "почему". Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа, какие удивительные открытия сделает ваш маленький естествоиспытатель.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения.

Нужно отметить, что очень важна заинтересованность кого-нибудь из взрослых: мамы, папы, старших брата или сестры. Тогда они смогут передать свою увлеченность малышу. Сам кроха, если, конечно, он не прирожденный биолог, вряд ли будет долго возиться с микроскопом без вашей активной помощи и участия.

Какие бывают микроскопы

Детский микроскоп ничем принципиально не отличается от микроскопа биологического. Это не макет и не игрушка, а действующий оптический прибор. И, часто, такие микроскопы имеют очень приличную оптику и большое увеличение. Давайте рассмотрим типы микроскопов и попробуем определить их основные плюсы и минусы.

Итак, чаще всего в магазине вы встретите так называемый прямой биологический микроскоп (монокулярный, т.е. имеющий один окуляр). С похожим прибором сталкивался любой из нас на уроках школьной биологии. Это классический вариант микроскопа, только оформлен он необычно и весело, чтобы понравиться своему маленькому хозяину (может быть раскрашен в яркие цвета или иметь не совсем обычную форму). С его помощью можно рассматривать как прозрачные объекты (на предметных стеклах в проходящем свете), так и непрозрачные (в отраженном свете). Важная характеристика любого микроскопа – его увеличение. Обычно микроскопы имеют три сменных объектива. Но увеличивает не только объектив. Окуляр тоже имеет свое собственное увеличение (как правило, 10 или 20 крат). Для того, чтобы посчитать общее увеличение микроскопа, нужно увеличение окуляра (всегда написано на окуляре) умножить на увеличение объектива. Так, если микроскоп имеет окуляр с 20-тикратным увеличением и объективы 4, 10 и 40, при смене объективов получаем увеличения 80, 200 и 800 крат. Современные световые микроскопы могут создавать увеличение в 1500–3000 крат. Стоит ли покупать прибор с таким увеличением в качестве первого микроскопа ребенку дошкольнику? Вероятно, не стоит. Даже для очень серьезных экспериментов малышу вряд ли понадобится увеличение больше 400–600 крат. Микробов, правда, рассмотреть не удастся. Но, если кто-нибудь из родителей не имеет специального образования, вы, скорее всего, не увидите их и в "крутой" микроскоп. Для приготовления микробного препарата нужно использовать специальные методы окраски мазка, очень мощное освещение и иммерсионные объективы (объектив с большим увеличением погружается в специальное иммерсионное масло, обычно кедровое, для устранения рассеивания света). Но расстраиваться нет причин. И без микробов маленькому биологу с головой хватит объектов для изучения.

Очень хорошим выбором для малыша станет стереомикроскоп (бинокулярный). Он имеет два расположенных под углом друг к другу окуляра, что создает стереоизображение. И хотя такие микроскопы дают относительно небольшие увеличения (до 100), зато позволяют рассматривать практически любые предметы, которые нас окружают. Это поможет малышу увидеть многие обыденные вещи совсем в ином свете. Для такого микроскопа не нужно мощное освещение. И, кроме всего прочего, бинокулярный микроскоп равномерно нагружает оба глаза, что больше подходит для неокрепшего детского зрения, чем монокуляры. Многие современные микроскопы имеют собственную встроенную подсветку. Обратите на это внимание при выборе прибора. Дополнительный источник света позволяет лучше осветить объект, а, значит, и лучше его рассмотреть.

Есть совсем маленькие, "карманные" микроскопы с небольшим увеличением. Их можно носить с собой на прогулку и рассматривать растения и насекомых прямо на лугу или в лесу.

Если у вас дома есть компьютер, можно обзавестись цифровым микроскопом. Эта дорогая современная игрушка тоже имеет свои достоинства и недостатки. Главное достоинство – возможность вывода изображения на экран монитора. Это превращает микроскоп в подобие увлекательной компьютерной игры. Ребенок может сохранить полученное изображение, отредактировать, раскрасить, подписать при помощи простого графического редактора. А еще можно записывать видеоизображение и даже сделать свой собственный видеофильм о микромире. Микроскоп снимается с подставки, с ним можно пройтись по комнате, поднося к любым предметам и получая на экране их увеличенное изображение. В каком-то смысле такой микроскоп превращается из исследовательского прибора в творческий инструмент. Хорошо ли это? И да, и нет. Если ваш малыш – натура творческая, цифровой микроскоп наверняка придется ему по душе. Если же кроха скорее естествоиспытатель, стремящийся постигнуть тайны мироздания, лучше приобрести для него обычный микроскоп. Вся захватывающая суть микроскопа именно в том, что смотришь в окуляр. Словно заглядываешь одним глазком в неведомый и удивительный мир, другую вселенную...

Оборудуем лабораторию

Для того чтобы занятия с микроскопом не наскучили малышу, организуйте их, как увлекательную игру, добавив известную долю таинственности. Пусть ребенок представит себя настоящим ученым-исследователем. А для этого ему понадобится мини-лаборатория. Выделите малышу полку, где будет стоять микроскоп, храниться образцы и необходимые инструменты для детских исследований. Обычный письменный стол может в считанные минуты превратиться в рабочий уголок. Только непременно позаботьтесь о хорошем освещении. Это снизит неизбежную нагрузку на детские глаза: чем лучше освещен объект, тем легче его разглядеть. Так что лучшее место для микроскопа – возле окна. Да еще прибавьте к этому яркую настольную лампу. Сразу приучайте малыша поддерживать порядок на рабочем месте (в лаборатории всегда должен быть порядок!), а после занятий все за собой убирать. Дайте ребенку всевозможные баночки и коробочки, в которых он сможет хранить свои объекты для исследования и необходимый инвентарь.

Кроме самого микроскопа, вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски). Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит. Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу, что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не "штучками" и "колесиками". Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом: подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку.

Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро. А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться. Научите малыша пользоваться пинцетом: отделять кусочки исследуемых объектов, класть их на предметный столик. Это будет развивать аккуратность и точность движений маленького исследователя.

Научная экспедиция

Раз уж малыш превратился в ученого-естествоиспытателя, значит, самое время отправиться в научную экспедицию за всевозможными образцами. Для такой необычной прогулки следует запастись несколькими баночками с крышками и коробочками, куда вы будете складывать свои находки. Очень удобна для этих целей коробка от конфет с пластиковыми ячейками или пластиковый лоток для яиц. Еще вам пригодятся маркер, чтобы подписать коробочки с образцами, пинцет и перочинный нож.

Каждый раз можно организовывать "экспедиции" в разные места. Сегодня поищите образцы во дворе, завтра отправьтесь на луг, послезавтра – к водоему. Дайте малышу возможность самому решить, что он хочет забрать домой для изучения. И, конечно, подскажите ему несколько своих идей.

Что же можно собирать? Абсолютно все! Листья, цветочки, лепестки, колючки растений, семена деревьев и цветов. Всевозможные почвы: чернозем, песок, глина. Очень интересно рассмотреть с малышом состав чернозема (хорошо видны остатки растений и даже живые насекомые), песчинки (красивые круглые кристаллики) и вязкую глину. Сразу станет понятно, где лучше расти растениям и почему. Соберите несколько видов лишайников. Они изумительно красивы под микроскопом. Интересно рассматривать мох. Часто в нем можно отыскать крошечных насекомых, которые практически не видны невооруженным глазом. Отломите по кусочку коры разных деревьев. Пригодятся перышки птиц. Зачерпните понемногу воды из лужи и заросшего водоема, прихватите немного водорослей и тины. Всю эту добычу рассортируйте и подпишите. Теперь вашему маленькому биологу хватит работы надолго.

Настраиваем микроскоп

В первую очередь необходимо настроить освещение. Для этого поверните зеркальце под предметным столиком таким образом, чтобы свет настольной лампы отражался от него и проходил через отверстие диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения (т.е. то, что вы видите в окуляр) не будет равномерно освещено. Теперь положите на предметный столик ваш препарат и зафиксируйте его специальными держателями. Установите объектив с самым маленьким увеличением. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. Во время фокусировки можно осторожно подвигать препарат. Так вам будет легче правильно его расположить. Найдя изображение, вращайте винты еще медленнее, чтобы исследуемый объект стал максимально резким. После этого при необходимости установите большее увеличение. Все, можно рассматривать!

Если к микроскопу прилагается встроенный осветитель, то зеркало вам не понадобится. Также нет необходимости его настраивать, если вы собираетесь рассматривать предметы в отраженном свете. В этом случае просто положите объект на предметный столик, который должен быть максимально освещен, и настройте фокус.

Как приготовить препарат

Для того чтобы рассмотреть какой-нибудь объект в проходящем свете, он должен быть очень тонким и прозрачным (иначе лучи света не смогут сквозь него пройти). Покровные стекла тщательно вымойте, сполосните в спирте (чтобы на них не оставалось пятен) и высушите. Если вы собираетесь исследовать какую-нибудь жидкость (например, молоко, сок или воду), просто капните пару капель на предметное стекло и сверху накройте покровным стеклом. Если объект исследования – кусочек растения, то при помощи острого лезвия срежьте с него тонкую, прозрачную пленочку, возьмите ее пинцетом и положите в центр покровного стекла. Сверху капните одну каплю воды. Капать воду сможет и малыш, а вот работать с лезвием, понятно, придется вам. Если ваш объект прозрачный, его нужно окрасить, добавив одну каплю водного раствора метиленового синего (в народе известен как "синька"). Теперь накрываем все это покровным стеклом, следя, чтобы под ним не осталось пузырьков воздуха, промакиваем лишнюю жидкость и изучаем под микроскопом. Такой препарат называется временным. После его изучения стекла моются и используются для последующих опытов. Если же вам хочется сохранить препарат надолго, перед тем как положить покровное стекло, тонкой иглой нанесите по его краю прозрачный клей, аккуратно придавите (стекла очень хрупкие и легко трескаются!) и оставьте сохнуть на сутки. Теперь это уже постоянный препарат, который можно рассматривать много раз.

Кстати, к большинству микроскопов прилагаются уже готовые микропрепараты и слайды для рассматривания. Такие наборы можно купить и отдельно.

Что можно посмотреть под микроскопом?

Для рассматривания под микроскопом годится буквально все. Начните с небольшого увеличения. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп. Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. Сначала пусть малыш определит это на ощупь, а потом увидит волоски в микроскоп. На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками.

Очень красивы лепестки цветов. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло. Если малышу будет интересно, попробуйте зарисовать, как выглядит пыльца разных растений. Некоторые микроскопы снабжены специальным проектором, который проецирует изображение на бумагу. Так его легче будет зарисовать. Рассмотрите кожуру и мякоть всевозможных овощей и фруктов. Чем они похожи и чем различаются?

Интересно рассматривать волосы и сравнивать их по цвету и толщине. Окажется, что кошачья шерсть тоньше человеческого волоса, а папин волос толще детских. А подсунутый под микроскоп собственный палец может произвести настоящий фурор. Особенно впечатлит грязь под ногтями. Микробов там, конечно, не увидишь. Но и без них выглядит ужасающе. Сразу может поступить требование постричь ногти. Не менее интересно посмотреть, из чего состоит домашняя пыль, как выглядит бумага, вата, нитки, клочки кукольных волос и меха мягких игрушек, рыбьи чешуйки и кости, икринки, мед, капельки молока, кристаллики соли, сахара, лимонной кислоты, соды, льда, всевозможные семечки и крупы, кусочки грибов, камушки и ракушки, привезенные с моря, шишки, бумажные деньги (на них можно отыскать разные знаки, которые не видны без увеличения).

Если у вас есть аквариум, соскребите немного налета с его стенок, положите на предметное стекло, сверху накройте покровным стеклом и рассмотрите при среднем увеличении. Поверьте, это потрясающая картинка! Из болотной воды, которую малыш набрал в "экспедиции", тоже получается интереснейший микропрепарат. Хоть и не микробы, но живые, двигающиеся существа. Фантастика! Кроме зоопланктона, можно увидеть и одноклеточные водоросли со жгутиками. Иногда в воду может попасть лягушачья икра, крошечные головастики и личинки водяных насекомых. А потом рассмотрите воду из-под крана. Есть ли там что-то живое и почему?

Вырастите с малышом плесень на хлебе. Для этого положите кусочек хлеба в стеклянную банку с крышкой (если есть специальная чашка Петри, то в нее), смочите водой и поставьте на несколько дней в теплое место (но не на солнце). Немного выросшей плесени положите в капельку воды на предметное стекло, закройте покровным стеклом, и ваш препарат готов. Можно рассмотреть обычные пекарские дрожжи. Для этого отщипните от брикета маленький кусочек и разведите в капельке воды. А еще можно прорастить пшеничное зернышко и ежедневно наблюдать, какие с ним происходят изменения...


Великие и ужасные

Ну а самые прекрасные объекты для детских исследований – это, бесспорно, насекомые. Где брать образцы для рассматривания, решать вам. Но, думаю, не стоит ловить и убивать насекомых специально. Даже ради науки. Не нужно такой подход делать для малыша нормой. Исключения могут составлять насекомые "вредные": муха, комар, таракан, колорадский жук. Этих "надоед" всегда можно отыскать с избытком. Очень интересно рассматривать под микроскопом (особенно бинокулярным) муху. Обратите внимание малыша на устройство ее глаза, ножек, крыльев. Посмотрите крыло с обеих сторон. Сверху хорошо видно его строение, а снизу вам представится очень красивая картинка: радужные парчовые переливы. У комара обратите внимание на "кусающее" устройство – хоботок.

Поищите на лугу крыло бабочки. Под микроскопом на нем видна пыльца. Обследуйте паутину. Там всегда можно найти погибших мелких насекомых. Просто поразительно, как сложно устроены такие крошечные, неприметные существа. Прочитайте с малышом книгу Я. Ларри "Необыкновенные приключения Карика и Вали". Наверное, Карик и Валя видели насекомых почти такими же – огромными и ужасающими.

Изучаем Чиполлино

Микроскоп поможет малышу узнать о том, что все живое состоит из клеток. Под микроскопом можно увидеть не только клетку, но и рассмотреть ее строение. Для этого вместе с ребенком приготовьте простой и наглядный препарат из обычного репчатого лука. Почему лук? У этого растения очень крупные клетки, и они отчетливо видны при сравнительно небольшом увеличении. Итак, разрежьте луковицу на несколько частей и отделите один сочный слой. Отрежьте от него небольшой кусочек, а затем с вогнутой стороны кусочка пинцетом отделите тонкую пленочку. На предметное стекло капните дистиллированной воды, положите в нее пленочку и аккуратно расправьте иглой. Затем добавьте пару капель водного раствора метиленового синего или водного раствора йода. Делать это нужно для того, чтобы бесцветные клетки окрасились и стали лучше заметны. Если удастся отыскать красно-фиолетовую луковицу, краситель можно не добавлять. Полученную "красоту" накройте сверху покровным стеклом и промокните выступившую жидкость. Попробуйте рассмотреть препарат сначала при маленьком, а затем при большом увеличении. Расскажите малышу, что и растения и животные состоят из крошечных клеточек. Вот они-то и видны в микроскоп, будто маленькие кирпичики. А почему их назвали клетками? Это имя придумал английский ботаник Р.Гук. Рассматривая под микроскопом срез пробки, он заметил, что она состоит "из множества коробочек". А еще он называл эти "коробочки" камерами и... клетками. Ведь, правда, похоже, что кто-то расчертил луковую пленочку на клеточки.

При большом увеличении хорошо видна клеточная стенка, ядро, вакуоль. Объясните малышу, что клеточная стенка – это перегородка, стеночка между клетками. Она защищает клетку и помогает сохранить нужную форму. Благодаря ядру клетка растет и размножается. А внутри вакуоли находится клеточный сок. Тот самый, который брызжет в разные стороны и вызывает слезы, когда мы режем лук.

Красный? Зеленый?

Спросите малыша, почему овощи и фрукты бывают разных цветов. Он попытается ответить на вопрос, выдумывая фантастические версии. Внимательно выслушайте его предположения, а потом предложите выяснить это наверняка. Для опыта вам понадобится несколько предметных стекол, мякоть всевозможных плодов (арбуз, тертая морковь, помидор, красный и зеленый перец, ягоды рябины и др.), зеленые листья растений. Капните на предметное стекло несколько капель воды, поместите туда немного мякоти спелого помидора и расщепите ее иглой. Накройте покровным стеклом и рассмотрите вместе с малышом под микроскопом. Вы сможете увидеть внутри клеток особые включения красного цвета – пластиды. Именно они придают спелым овощам и фруктам красный, желтый или оранжевый цвет. Зеленые листья и плоды тоже содержат пластиды, но зеленого цвета. А уже знакомый нам лук или картофель белые потому, что их пластиды бесцветны. Поэкспериментируйте с самыми разными овощами и фруктами, чтобы малыш смог в этом убедиться. А затем расскажите ему, что пластиды одного вида могут превращаться в другой. Вот почему зеленый помидор поспевает и становится красным. А что происходит с зелеными листьями осенью, почему они желтеют и краснеют? Думаю, теперь юный биолог и сам сможет найти ответ на этот вопрос. Ну, разве это не замечательно?

Обсуждение

Нашему малышу десять лет и мы подарили на новый год ему микроскоп. Микроскоп выбирали в интернет магазине, в итоге купили микроскоп для учебных целей с набором для опытов - там были готовые препараты, запасные стекла и флаконы с артемией. Увеличение микроскопа максимум 640 крат, но для ребенка этого оказалось достаточно. Главным критерием при выборе прибора - стеклянная оптика, а не пластик, что при первых наблюдениях показало хорошие результаты, а также удобная и понятная система подсветки (светодиодная сверху и снизу). Приобретали данный микроскоп в хорошем магазине Sky-route, где получили данную рекомендацию по приобретению этой модели.
Итог, сегодня наш сын и мы с женой наблюдаем микромир сообща (когда есть время). Препараты готовим сами, делаем тонкие срезы овощей, фруктов. Поразило, когда мы увидели движение цитоплазмы в листьях традесканции (купили это комнатное растение, прочитав в учебнике об этом). Это было удивительно увидеть своими глазами жизнь микромира в движении.

03.04.2016 13:44:25, Роман1979

Я думала, что микроскоп ребенку надо покупать где-то в выпускных классах. А оказалось, что когда нашему третьекласснику бабушка купила микроскоп sititek микрон space, то его и за уши от него не оттащишь. Он и нас увлек своими опытами.

Да, микроскоп у ребенка вызывает восторг! Мы подарили своему учебный микроскоп EULER Study 60M , оказалось, что очень интересно рассматривать не только ребенку, но и нам с мужем. Смотрели на соль, на пыль, на монетки- забавно)

Недавно купил ребенку микроскоп LEVENHUK DuoScope 2L,
ребетенку 9 лет- очень довольный:)

покупал через интернем магазин http://cyber-optic.ru
докладываю- цены очень хорошие

12.11.2008 13:08:22, Андрей

Большое спасибо! У нас девчонки еще маленькие, поэтому микроском купила их папе на новый год. Смотрели лук, дрожжи, волосы, еще что-то, потом как-то на полочку переместился - ничего не придумывалось. Теперь будем "по списку" из статьи:)

01.12.2006 00:05:39

С тех пор, как ученые обнаружили микробов, они учились их выращивать на различных питательных средах. Ведь для того чтобы знать, как бороться с тем или иным микроорганизмом, нужно изучить не только его форму, но и повадки, образ жизни, потребности в питании. Сейчас в лабораториях исследователи могут выращивать практически любой микроорганизм, для этого разработано огромное количество питательных сред. Но в прошлом, во времена Луи Пастера - родителя современной науки о микробах (микробиологии), в распоряжении ученых была доступна для изучения лишь вода из лесных луж и водоемов, настой сена и мясной бульон.

Слово "микроорганизм" понятие собирательное, в него входят все невидимые невооруженным глазом организмы - бактерии, грибы, одноклеточные и еще целый ряд микрожителей. К слову, вирусы не относят к микробам. Их выделяют в отдельную группу, и наблюдать их в обычный световой микроскоп не представляется возможным.

Микробы вездесущи, обнаружить их можно буквально на всем, что нас окружает. Они бывают аэробами, т.е. для их жизнедеятельности требуется присутствие свободного молекулярного кислорода, но могут быть и анаэробами, способными прожить в условиях без доступа кислорода. Размеры, форма и принципы питания у микробов очень разнятся, но из них всех, пожалуй, самой красивой и причудливой является инфузория туфелька.

Инфузорий можно часами наблюдать в микроскоп. Они имеют очень необычную форму и легко узнаются среди прочих микроорганизмов. Для наблюдения за ней не требуется длительных подготовок и специальных навыков. Ее может увидеть любой желающий даже с помощью самого простого микроскопа.

Проведение опыта с инфузорией

Для проведения опыта понадобится совсем немного воды из лесной лужи, зацветшего водоема, из вазы с цветами или даже из аквариума. Идеально, если в воде окажется несколько веточек водорослей. Препарат с инфузорией можно приготовить по принципу раздавленной капли, или сделать "висячую" каплю на предметном стекле с выемкой.

При рассматривании образца под микроскопом (лучше всего это делать на среднем или большом увеличении) можно заметить двигающихся овальных существ. Строго говоря, они не совсем овальные - передний конец инфузории заострен, а задний, наоборот, имеет сильно округлую форму. Одна из боковых сторон, приблизительно по центру туловища, вогнута, что придает существу большое сходство с подошвой туфли. Отсюда и название микроорганизма - инфузория туфелька. Вокруг всего тела инфузории располагаются в несколько слоев реснички, которые помогают ей двигаться и "загонять" пищу в ротовое отверстие, расположенное неподалеку от головного конца.

Для особо пытливых исследователей будет интересно понаблюдать за процессом пищеварения у инфузории. Пища, попавшая в ротовое отверстие, постепенно перемещается в "желудок" - пищеварительную вакуоль, похожую на пузырек. В ней пища переваривается, а затем выталкивается в другую вакуоль - сократительную, которая является чем то, наподобие кишечника у животных. Сократительная вакуоль служит для устранения остатков пищи наружу. Для того чтобы увидеть, как происходят эти процессы, нужно покормить инфузорию, например, несколькими капельками обычной туши для заправки перьевых ручек. После того, как инфузория заглотнет ее, можно рассмотреть месторасположение пищеварительной вакуоли - темный шарик на фоне светлого тела микроорганизма.

Многие знают, что инфузории относятся к классу простейших, но это название довольно относительное, т.к. многочисленные опыты над инфузориями обнаружили у них зачатки психической деятельности. К примеру, инфузорию помещали в узкую трубку, диаметр которой совсем немного превосходил размер самого животного. Трубку с обеих сторон запаивали. Когда инфузория доплывала до одной стороны, она делала попытки проплыть дальше, но вскоре разворачивалась головным концом и направлялась в другую сторону. Со временем инфузория стала тратить на развороты все меньше времени и сил, а значит, смогла приспособиться к новым условиям.

Но поражает в инфузории даже не это. В человеческом или другом сложном организме все клетки узкоспециализированы и выполняют какую-либо одну функцию. Инфузория же состоит из одной-единственной клетки, в которой есть, хоть и примитивная, но выделительная и пищеварительная системы, мышечная система, состоящая из сократительных волокон, двигательный аппарат из ресничек. Следовательно, эта единственная клетка может полностью обеспечивать все стороны жизнедеятельности. Возможно поэтому ученые прошлого с таким уважением относились к инфузории и часами просиживали над микроскопом, изучая и зарисовывая ее повадки.

Какие же микроскопы подойдут?

В микроскоп, способный давать увеличение не менее 600-800х крат, можно понаблюдать не только простейших, но и бактерий. Самый простой способ это сделать - собрать небольшое количество зубного налета и развести его в капельке воды. Так можно увидеть основных представителей царства бактерий. В простом лабораторном микроскопе они будут выглядеть неказисто - маленькие шарики, палочки или нити с нечеткими контурами. Но при использовании фазово-контрастного метода на более дорогостоящих лабораторных моделях можно рассмотреть гораздо больше. Их контуры станут четче, а тела будут выделяться ярким светом на темном фоне. И хотя внутреннюю структуру при таком исследовании изучить не получится (для этого нужно убить бактерий и окрасить), можно увидеть движение бактерий. А по характеру движений ученые определяют принадлежность бактерий к тому или иному классу и выявляют возбудителей некоторых болезней.

Для лабораторных же исследований, направленных на выявление и более точную идентификацию болезнетворных организмов, часто используются жидкие и плотные питательные среды. В них можно наблюдать не только отдельных микроорганизмов, но и целые колонии, т.е. большие скопления клеток, видимые невооруженным глазом. Однако эта техника достаточно сложная и не годится для применения в домашних условиях.

Микроскоп – не только прибор профессионального назначения, но и способ привлечения к науке детей и подростков. Существуют определенные различия в богатом ассортименте приборов.

Устройство и принцип работы

Конструкция состоит из тубуса – полой трубки, где оборудуется окуляр (система линз). Когда он снимается, то регулируется увеличение. Прибор оснащается насадками для одного (монокулярная) или двух глаз (бинокулярная) либо двойной линзой с камерой для съемки.

Перед рассматриваемым объектом располагается объектив. Он бывает двух типов: сухой и иммерсионный. Увеличение осуществляется специальным механизмом – револьверной насадкой (дорогие модели). Простые модели требуют ручной смены объективов.

Исследуемый элемент размещается на предметном столике. Чтобы переместить объект по вертикали используется винт регулировки. Освещенность настраивается конденсатором. Некоторые модели оборудованы подсветкой (электрическая или зеркальная).

  • Исследуемый объект кладется на предметное стекло, сверху покрывается тонкой стеклянной пластинкой.
  • Свет концентрируется третьей системой линз – конденсатором, который крепится держателем. Ниже находится осветительное зеркало, которое передает свет от лампы.
  • Изображение сохраняется, если микроскоп оборудован камерой.

Принцип работы электронного микроскопа основан на изображении пучка заряженных частиц энергии. Они контролируются магнитными линзами, которые задают движение электронов.

Одна часть рассеивается, вторая – проходит через объект. Информация поступает от зарядов и подается на экран.

Основное предназначение заключается в получении увеличенных изображений, измерении предметов, видимых или невидимых глазом.

Основные задачи:

  • Редактирование схем.
  • Анализы дефектов.
  • Мониторинг.
  • Подготовка материалов.
  • Тестирование.
  • Снятие микрохарактеристик.

Область применения микроскопов безмерна широка: метрология, криобиология, токсикология, вирусология, нанометрология, химия, биология, судебная экспертиза.

Функции микроскопов

  • Создание светового потока.
  • Воспроизведение увеличения оптического образа.
  • Визуализация изображения.

Как выбрать микроскоп

Тип конструкции

Материал изготовления прибора говорит о надежности и долговечности изделия. Лучшими характеристиками отличается металлический сплав. Его структура снижает вибрацию, а при температурных изменениях колебания отсутствуют.

Пластиковый корпус уступает металлическому по прочности.

Оптика

Важнейший параметр – обустройство качественного фокуса.

Стандартными линзами считаются DIN или JIN. Эти модели есть в розничной продаже, их легко заменить при поломке.

Линзы дают светокоррекцию.

Чем их количество больше, тем лучше передаются цвета, особенно на больших расстояниях. Пластиковые варианты, которыми оборудуются детские микроскопы, дают нечеткое и размытое изображение.

Окуляры

Линзы, расположенные ближе к глазу. Характеризуются широким полем зрения, что дает большее изображение. Глазам легче фокусироваться на объекте. Минимальный допустимый диаметр линз окуляра составляет 18 мм.

Подсветка

  • Лампа накаливания. Самая простая и недорогая.
  • Флуоресцентное освещение. Стеклянная колба, заполненная газом. Стоимость дороже, но работает дольше.
  • LED-лампы. Относятся к профессиональным устройствам, экономны, эффективны.
  • Галогеновые лампы. Мощный поток белого света гарантируют яркое освещение при любых условиях.

Фокус

Грубая фокусировка состоит из одного регулятора, который двигает предмет через фокальную плоскость линзы. Чтобы увидеть изображение, регулятор поворачивается, но сделать это сложно.

При точной фокусировке объект увеличивается в вертикальной и горизонтальной плоскости.

  • Сменные окуляры. Замена механизма происходит быстро, что ограничивает попадание пыли, так как очистить эти места сложно.
  • Набор для опытов. Если комплектация включает готовые образцы, то к работе можно приступить сразу после приобретения микроскопа. Это удобно, но не играет роли при выборе подходящего устройства.
  • Цифровой экран. Такое приспособление подходит как способ демонстрации процесса, так как действия видны на дисплее. Но стоимость значительно возрастает, практически все модели подключаются к внешним мониторам.

Какой должен быть хороший микроскоп:

Важное требование к качественному изделию – бинокулярная или тринокулярная насадка. Два окуляра позволяют смотреть двумя глазами, не оказывают нагрузку для глаз при продолжительной эксплуатации.

Тринокулярный механизм включает в себя дополнительную трубку для установки камеры, поэтому одновременно проводится наблюдение, фото или видеосъемка.

Характеристики

  • Ирисовая диафрагма.
  • Держатель фильтра
  • Увеличение до 2000 раз.
  • Предметный столик с препаратодержателем.
  • Мощная подсветка (нижняя, верхняя).
  • Точная, грубая фокусировка.
  • Адаптер переменного тока.

Плюсы:

  • Встроенный экран.
  • Качественная оптика.
  • Работа от сети и автономная.
  • Диоптрийная коррекция зрения.
  • Эргономичная конструкция штатива.
  • Комплектация набором для исследований.
  • Запись фото, видеофайлов с выводом на компьютер.
  • Оптическая схема микроскопа рассчитана на бесконечность.

Минусы:

  • Высокая стоимость.
  • Тяжелый вес или объем.

Приспособление для точных работ, пайки, монтажа электронных карт, микросхем. При ремонте и восстановлении электронных приборов, возникает необходимость пайки мелких деталей. Большинство случаев подразумевает поиск микротрещин материнских плат.

Устройство оборудовано фокусировкой вручную, плавным изменением степени увеличения, подсветкой.

С помощью программ измеряются углы, расстояния, площади, радиусы при увеличении до микрометра.
Рейтинг:

  • Konus Crystal PRO 7-45X Stereo – самый многофункциональный. Тринокулярный прибор предназначен для пайки, ювелирных мастерских, зубных лабораторий.

Бинокулярная и стереоскопическая насадка дополняют возможности изделия. Расстояние, диоптрии настраиваются, регулируется галогеновое освещение.

  • Andonstar A 1 – самый продуктивный. Увеличение достигает 500х путем изменения расстояния до рассматриваемого предмета. Отличительной чертой считается невысокая стоимость.

Комплектация включает насадку с зеркалом, подсветка регулируется. При необходимости подключается к компьютеру, что удобно и эффективно.

  • Bresser Advance ICD – самый профессиональный. Большая поверхность предоставляет место для беспрепятственного проведения сборочных операций, исследования объектов до 40 мм высотой.

Головка микроскопа вращается на 360 градусов, поэтому он используется для наблюдения несколькими пользователями без перемещения в пространстве.

Характеристики:

  • Камера 2,0 мпикс.
  • Увеличение до 200х.
  • Ручная фокусировка до 500 мм.
  • Освещение 8 светодиодов.
  • Источник питания компьютер.

Плюсы:

  • Маленький вес.
  • Регулируемое увеличение.
  • Подсветка ремонтируемого объекта.
  • Доступный ремонт.
  • Настраиваемая резкость.

Минусы:

  • Высокая цена.

  • Levenhuk 2ST – сверхточный. Большое рабочее расстояние 60 мм, увеличение 40х. Исследованию подлежат плоские микропрепараты, тонкие срезы, крупные предметы.

Оптическая система изготовлена из специального прозрачного стекла, которое передает качественную реалистичную картинку.

Резкость регулируется специальным колесиком.

  • Микромед 2 вар. 2-20 – самый освещенный. Яркость подсветки регулируется, прибор оснащен галогеновой лампой. В основе работы лежит метод проходящего света светлого и темного поля, фазового контраста.

Исследуемые объекты – окрашенные и неокрашенные срезы, мазки. Микроскоп используется для медицины, биологии, химии. С помощью прибора проводятся диагностические исследования в больницах, клиниках, высших учебных заведениях.

Изображение выводится на экран компьютера или при подключении видеоокуляра.

  • OptikaM B -157 – самый надежный. Модель включает высококачественную оптику, прочные механические детали, простую настройку, эксплуатацию. Прибор подходит для обучения естественным наукам.

Корпус эргономичный, изготавливается из литого металла под давлением. Объективы ахроматические, покрыты противогрибковым составом.

Особое удобство при использовании оборудования – это наблюдение двумя глазами. Опция распределяет нагрузку равномерно, снижает дискомфорт при длительной работе. Популярностью пользуются модели для лабораторий.

Характеристики:

  • Диаметр трубки 30,5 мм.
  • Диапазон увеличение до 600х.
  • Подсветка белым светодиодом.
  • Подключение дополнительной техники.

Плюсы:

  • Высокое качество.
  • Механизмы грубой и точной настройки.
  • Большой предметный столик.
  • Контрастное изображение.
  • Вращающаяся бинокулярная насадка на 360 градусов.
  • Регулируемое межзрачковое расстояние.
  • Подсветка естественная.

Минусы:

  • Отсутствие подсветки (некоторые модели).
  • Вертикальное положение окуляров.

  • Микромед Эврика 40х-1280х . Прибор предназначается для учебных и лабораторных работ в области биологии в школе, лицее или другом учебном заведении.

    Универсальное питание системы освещения (адаптер и три батарейки) допускает использование дома.

Объективами 4х, 10× изучаются непрозрачные плоские элементы. Камера 2мп выводит изображение на экран компьютера.

  • MP -450 – самый доступный. Микроскоп двойного действия, используется освещение солнечного света при зеркале вверх, при изменении положения поступает освещение от лампы.

Комплектация включает 4 предметных стекла с подготовленными препаратами. Исследуемый объект – биологические материалы в виде срезов и мазков. Комплектация включает линзу Барлоу, которая изменяет кратность увеличения.

  • Levenhuk LabZZ M 101 Lime >– самый стильный. Микроскоп изготавливается в ярких, привлекательных цветах. Оптика соответствует уровню традиционных моделей.

Стандартный набор включает 4 дополнительных предметных стекла со стикерами для маркировки. Комплектация включает все необходимые материалы для проведения исследований. Выдвижной окуляр не требует замены, поэтому риск потерять стекла не возникает.

Для исключения усталости трубка наклонена на 45 градусов. Образец располагается на круглом предметном столике, фиксируется плотно зажимами.

Приборы характеризуются средней мощностью. Они оказывают помощь в изучении ботаники, зоологии, биологии, химии, физики. Объекты микромира рассматриваются на мониторе, так как цифровые устройства подключаются через USB к компьютеру, или .

Приборы просты в использовании.

Характеристики:

  • Питание – сеть, батарейки.
  • Фокусировка грубая.
  • Яркость регулируется.
  • Количество объективов 3.
  • Выдвижной окуляр.
  • Увеличение до 640×.
  • Предметный столик 90×90.
  • Поддержка программного обеспечения.
  • Сенсорная камера.
  • Разрешение 1600×1200.

Плюсы:

  • Низкое энергопотребление.
  • Набор для опытов.
  • Ребенок погружается в увлекательный мир науки.
  • Компактные размеры.
  • Быстрое включение.
  • Легкие, но прочные приборы.
  • Продолжительная автономная работа (около 20000 часов).

Минусы:

  • Небольшое увеличение.
  • Оптические элементы из пластика.

  • МБС-12 – самый плавный. Используется при исследованиях ботаники, биологии, минералогии, ювелирной промышленности. Увеличение происходит плавно, без рывков, до 102×. Картинка сохраняется на всех этапах работы.

Рабочая поверхность 79 мм подходит для изучения крупных объектов. Диоптрии настраиваются.

  • Биологический микроскоп БИОЛАМ М-1 – самый многофункциональный. С помощью устройства проводятся исследования препаратов из области металлографии и микроэлектроники.

Изучение происходит в отраженном, поляризованном освещении методом светлого и темного поля. Увеличение до 1000 крат.

  • Bresser Science MTL – 201 – самый профессиональный. Основное назначение прибора – металлографический микроскоп. Незаменим в исследованиях минералогической, электронной и точной инженерной сфере.

Среди главных преимуществ: большой предметный столик с регулируемыми осями, ручки грубой и точной настройки, комбинация поляризатора и анализатора.

Предназначение изделия – наблюдение за относительно крупными предметами. Это бабочки, насекомые, кристаллы, ювелирные изделия, мелкие часовые механизмы. Увеличение в сто раз. Объем образуется за счет отдельных оптических систем для каждого глаза.

Стереомикроскопы применяются специалистами для получения максимально объемного и четкого изображения объекта. Операции с элементами проводятся прямо на предметном столике без покровного стекла.

Изделия стационарные, оснащаются системой крепления.

Характеристики:

  • Галогенная подсветка.
  • Тринокулярная насадка.
  • Предметный стол с нониусной шкалой.
  • Угол наклона 30 градусов.
  • Количество объективов 5.
  • Источник питания сеть.

Плюсы:

  • Регулировка освещения.
  • Удобный разворот для пользователя.
  • Возможность видеозаписи, фотосъемки.
  • Коррекция диоптрий, межзрачкового расстояния.
  • Качественное, яркое изображение.

Минусы:

  • Высокая стоимость.
  • Большие габариты.

  • 3D микроскоп NS -3000 – высокоскоростной. Прибор предназначен для точного измерения объектов, построения изображений в пространстве.

Быстродействующий сканирующий модуль и программные алгоритмы формируют картинку в режиме реального времени.

С помощью механизма проверяются, измеряются миниатюрные 3D-структуры (полупроводниковые пластины, плоские панели для дисплеев, стеклянные подложки).

Управление микроскопом с регулировкой параметров под силу даже новичку, главная панель управления и изображение находятся в одном окне программы.

  • K 1-Fluo – самый производительный.

Микроскоп применяется в области биологии и медицины, отличается превосходным качеством изображения из-за оптических компонентов, высокочувствительного детектора, стабильного многоволнового диодного лазера.

Оптика и механизм объединяются с любым другим типом микроскопа. Интерфейс располагает простым и понятным управлением.

Программное обеспечение включает режимы сканирования, трехмерное изображение, мульти-канальное детектирование, изображение сечения, временные серии.

  • Nanofinder S – 3D – самый универсальный.

Предназначение прибора – исследования в нанолабороториях при анализах полупроводников, жидких кристаллов, оптических световодов, полимеров, фармацевтических, биологических веществ, одиночных молекул.

Преимуществом работы является выбор лазеров, автоматизированная структура.

Приборы увеличивают изображения исследуемых объектов за счет образцов дифракции, которые образуются в результате взрыва частиц фотонами лазерного луча.

Живые ткани рассматриваются вглубь на 1 мм посредством флюоресценции (физического процесса, разновидности люминесценции). Собирается лазер системой обычных и полупрозрачных зеркал.

Применяются устройства в лабораториях, для домашнего использования не подходят из-за сложности принципа работы.

Характеристики:

  • Увеличение до 100x.
  • Диапазон измерений высоты – 70 мм.
  • Высокочувствительный сенсор.
  • Количество детекторов до 4.
  • Разрешение сканирования 2048×2048.
  • Электронное управление.

Плюсы:

  • Наглядное, яркое изображение.
  • Оптическое высокое разрешение.
  • Построение конфокального изображения в реальном времени.
  • Автофокусировка, подбор увеличения.
  • Простой режим анализа.
  • Ткань, исследуемая лазерными фотонами, практически не разрушается.
  • Обеспечивается высокое пространственное разрешение.

Минусы:

  • Требуются дорогие оптические ресурсы.
  • Луч поглощается водой тканей.

  • Celestron – самый современный. Инновационная конструкция включает дисплей вместо традиционного окуляра. Просмотр изображения удобен для одного человека или группы.

Предметы исследования – части растений, животных, волокна тканей, бактерии, плесень, дрожжи.

  • МЕТАМ ЛВ 32 – самый точный. Применяется при исследованиях микроструктур металла, сплава, непрозрачных объектов в отраженном свете (светлое, темное поле) и поляризованном свете.

Отличительные элементы микроскопа – новые объективы без хроматической окраски контуров, широкоугольные окуляры. Растровая осветительная система повышает равномерную освещенность объекта.

Область применения – металлургические, машиностроительные предприятия.

  • Bresser LCD 50x–2000x – самый защищенный. Модель характеризуется высокой оптикой и богатой комплектацией.

Подходит для демонстрации, обучения школьников и студентов, профессиональных исследований нумизматики, филателии и других мелких работ. Микроскоп защищен сетевым адаптером от перепадов напряжения.

Размер экрана позволяет проводить исследования без подключения к другому монитору. Изображение увеличивается, фиксируется фото, видеосъемка.

Устройство оборудовано жидкокристаллическим монитором для наблюдения или исследования объектов группой пользователей (школьников, студентов, ученых или других специалистов). Демонстрационный микроскоп используется в учебном процессе.

Характеристики:

  • Окуляры 10х22,5 мм.
  • Перемещение столика 40 продольно, 130 поперечно.
  • Увеличение 1500-2000х.
  • Цифровая камера 5 мегапикселей.
  • Светодиодная подсветка.
  • Подключение USB.

Плюсы:

  • Сохранение изображения.
  • Дисплей жидкокристаллический.
  • Четкая цветопередача.
  • Изучение прозрачных, непрозрачных материалов.

Минусы:

  • Высокая стоимость.
  • Небольшой ассортимент.

Особенность технологии заключается в наблюдении на сером или темном фоне. Рассматриваемое изображение выглядит четким и контрастным.

Модели применяются для медицинских, промышленных целей (обнаружение волокон, кристаллов, проверка полупроводников, точки напряжения).

Характеристики

  • Допустимый вес до 15 кг.
  • Увеличение 2000 крат.
  • Число объективов 5.

Плюсы

  • Современный дизайн.
  • Доступные рукоятки управления.
  • Объектив без необходимости фокусировки.

Минусы

  • Отсутствует подключение к ПК.

  • Микромед ПОЛАР 3 – самый удобный. Приспособление осуществляет исследования прозрачных и непрозрачных предметов в поляризованном или обыкновенном проходящем свете. Поляризатор вращается на 360 градусов, а анализатор – на 90.

Предметный стол круглый, вращается, углы фиксируются. Система линз Бертрана. Изображение фотографируется.

  • Bresser Science ADL-601P – самый оснащенный. Отличием модели считается тринокулярная насадка под углом 30 градусов, что позволяет изучать и фиксировать объекты одновременно результаты исследований.

Освещение регулируется для конкретных потребностей эксперимента.

  • Nikon Eclipse E 200 POL – самый бесконечный. Особенностью этой модели считается новая оптическая система CFI60, которая включает бесконечное построение изображения с парфокальным расстоянием 60 мм.

Это гарантирует четкую, яркую картинку при большом рабочем расстоянии и числовых апертурах. В процессе используются специальные объективы для наблюдений в проходящем поляризованном свете.

Приборы необходимы специалистам при выполнении мелких, точных ремонтных работ, включая пайку, нарезание дорожек на печатных платах, поиск микротрещин, короткого замыкания, контроля качества работы.

Микроскопы используют любые методы исследования – фазовый контраст, поляризация, флуоресценция, темное поле.

Характеристики

  • Увеличение 300 крат.
  • Камера 5 пикселей.
  • Объектив линза высокого качества.
  • Окуляры 2 (15, 10х).

Плюсы

  • Плавная регулировка яркости освещения.
  • Совместимость с компьютерными программами.
  • Антигрибковое покрытие.
  • Широкое поле обзора.
  • Документирование результатов.
  • Профессиональный штатив.

Минусы

  • Крепление штатива некоторых моделей шаткое.
  • Ошибки совместимости программного обеспечения.

  • USB -микроскоп DigiMicro Prof – самый профессиональный. Встроенная камера передает ясное, четкое увеличенное изображение, которое захватывает мельчайшие детали.

Фото и видео передается на компьютер через USB-подключение, используется изделие как со штативом, так и без. Опции измеряют расстояние, площади, углы, радиусы.

  • Eclipse Е200F /Е200F LED – самый высокоинтенсивный. Прибор оснащается линзой Fly-Eye, которая гарантирует равномерную яркость во всей области работы. Цветовая температура остается постоянной при любой степени увеличения.

Рабочее расстояние 60 мм открывает доступ к огромному количеству исследуемых материалов.

  • USB микроскоп Supereyes B 011 – самый длиннофокусный. Технические работы легко осуществляются при помощи этой модели, так как рабочее расстояние между исследуемым предметом и линзой превосходит по значению любые виды микроскопов.

При этом выполняется операции высокой точности, без искажений по всему пространству объекта с 500-кратным увеличением. Все данные передаются, сохраняются на компьютере.

Изделия делятся на простые оптические и сложные цифровые. В школе распространены простые устройства, не требующие предварительной подготовки. Они эффективны, удобны, оборудованы специальными ограничителями, пружинистыми оправами.

Характеристики

  • Угол наклона 45 градусов.
  • Увеличение 400 крат.
  • Количество объективов 3.
  • Увеличение камерой до 2000 раз.
  • Грубая, точная очистка.
  • Предметный столик 90×90.

Плюсы

  • Лапки-держатели предметного столика.
  • Двойная подсветка сверху и снизу.
  • Светодиодная, галогеновая подсветка.
  • Простое применение.
  • Широкопольный окуляр.
  • Оптика высококачественная.
  • Набор для опытов.

Минусы

  • Небольшое увеличение.

  • Levenhuk Rainbow 2L – самый стильный. Яркий, разноцветный прибор, укомплектованный необходимым набором для разведения микроскопических рачков. Увеличение до 400×.

С помощью двойной подсветки изучаются прозрачные и непрозрачные объекты.

Прочный пластиковый корпус делает приспособление легким. Оснащение цифровой камерой 0,3 мпикс сохранит фото и видео процесса исследования.

  • Motic SFC -100FL – самый классический. Предназначение устройства – проведение анатомических, геологических опытов. Увеличение предмета происходит вращением револьверной головки. Диффузор служит снижению яркости освещения.
  • Celestron – самый демократичный. Двойная подсветка для изучения прозрачных, непрозрачных элементов. Наблюдения проводятся в режиме реального времени через окуляр или с экрана компьютера благодаря цифровой камере.

К этой группе относятся функциональные дорогие приборы. Они передают изображение на монитор компьютера, дополнительно подключается фотоаппарат, видеокамера. Картинки сохраняются на цифровом носителе, где они корректируются.

Современные оптические приборы, незаменимые для специалистов во всех областях науки. Благодаря приспособлениям проводится детальнейший анализ материала, микроскопических элементов.

Применение – медицина, химия, биология, электроника, материаловедение.

Характеристики

  • Увеличение до 2000×.
  • Предметный стол 140×155 мм.
  • Насадка поворачивается на 360 градусов.
  • Разрешение 1280×1024.
  • Увеличение до 650х.
  • Число объективов 4.

Плюсы

  • Надежная конструкция. Простая настройка.
  • Технологичное, функциональное оборудование.
  • Компактные изделия.
  • Низкое энергопотребление.
  • Широкое поле зрения.

Минусы

  • Стоят дорого.

  • Levenhuk D 870T – самый практичный. Цифровой тринокуляр подходит для занятий научными исследованиями в области медицины, биологии, криминалистики, а также ювелирными работами.



В продолжение темы:
Сад и огород

У интеллигенции дореволюционной России была своя любимая святая: Иулиания Лазаревская или Муромская. Она была примером для всех людей, видевших свое предназначение в служении...

Новые статьи
/
Популярные