Приведение сосредоточенной нагрузки к эквивалентной равномерно распределенной. Распределенная нагрузка

В практике расчета строительных конструкций часто встречаются случаи неравномерно распределенной нагрузки (отдельные случаи ветровой и снеговой нагрузки, нагрузки от собственного веса балок переменного сечения и др.). Как правило, строительные нормы допускают замену неравномерно распределенной нагрузки приближенным нагрузкой, распределенной по линейной зависимости (по треугольнику или трапеции).

Рассмотрим простейшие случаи неравномерно распределенной нагрузки.


Примеры построения эпюр в стержнях с ломаной осью

Стержень с ломаной осью считается система прямых стержней, жестко с ’ объединенных между собой в узлах. В данном курсе будем рассматривать только плоские системы, т. е. такие, в которых оси всех стержней лежат в одной плоскости. Внешняя нагрузка также должна быть приложена в этой плоскости. В каждом стержни этой системы могут возникать поперечная и продольная силы $N$, $Q$ и изгибающий момент $M$. Рассмотрим простейшие примеры построения эпюр в стержнях с ломаной осью.

Пример 1


Проверка равновесия узлов


Аналогично проверка проводится и для узла С.


Проверка равновесия узлов


Аналогично проверка проводится и для узла B.

Наша группа

Новости сайта:

21-08-2017 11:00

Добавлен , теперь намного проще и быстрее можно построить расчетную схему для стандартных ферм.

12-05-2017 06:02

В расчете балок исправлена ошибка при длинах балки больше 10м. была неверная прорисовка балки.

09-05-2017 20:00

Расчет рам методом сил стал проще. В расчете рам реализована возможность получения развернутого решения методом сил.

01-05-2017 16:00

В расчете геометрических характеристик сечения добавлен полукруг.

21-04-2017 22:10

РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК СЕЧЕНИЙ теперь адаптирован под мобильные устройства . Теперь моменты инерции и центр тяжести можно вычислить на смартфоне.

13-04-2017 07:20

Существенно переработан РАСЧЕТ БАЛОК . Добавлена возможность учета треугольной и трапециевидной нагрузки . Оптимизировано для использования на смартфонах .

31-03-2017 08:33

Очередные улучшения расчета рам - теперь сервис автоматически определяет степень статической неопределимости системы и позволяет упростить Вам ход расчета статически неопределимой рамы методом сил или перемещений.

В инженерных расчетах часто приходится встречаться с нагрузками, распределенными вдоль данной поверхности по тому или иному закону. Рассмотрим некоторые простейшие примеры распределенных сил, лежащих в одной плоскости.

Плоская система распределенных сил характеризуется ее интенсивностью q, т. е. значением силы, приходящейся на единицу длины нагруженного отрезка. Измеряется интенсивность в ньютонах, деленных на метры


1) Силы, равномерно распределенные вдоль отрезка прямой (рис. 69, а). Для такой системы сил интенсивность q имеет постоянное значение. При статических расчетах эту систему сил можно заменить равнодействующей

По модулю,

Приложена сила Q в середине отрезка АВ.

2) Силы, распределенные вдоль отрезка прямой по линейному закону (рис. 69, б). Примером такой нагрузки могут служить силы давления воды на плотину, имеющие наибольшее значение у дна и падающие до нуля у поверхности воды. Для этих сил интенсивность q является величиной переменной, растущей от нуля до максимального значения Равнодействующая Q таких сил определяется аналогично равнодействующей сил тяжести, действующих на однородную треугольную пластину ABC. Так как вес однородной пластины пропорционален ее площади, то, по модулю,

Приложена сила Q на расстоянии от стороны ВС треугольника ABC (см. § 35, п. 2).

3) Силы, распределенные вдоль отрезка прямой по произвольному закону (рис. 69, в). Равнодействующая Q таких сил, по аналогии с силой тяжести, по модулю равна площади фигуры ABDE, измеренной в соответствующем масштабе, и проходит через центр тяжести этой площади (вопрос об определении центров тяжести площадей будет рассмотрен в § 33).

4) Силы, равномерно распределенные по дуге окружности (рис. 70). Примером таких сил могут служить силы гидростатического давления на боковые стенки цилиндрического сосуда.

Пусть радиус дуги равен , где - ось симметрии, вдоль которой направим ось Действующая на дугу система сходящихся сил имеет равнодействующую Q, направленную в силу симметрии вдоль оси при этом численно

Для определения величины Q выделим на дуге элемент, положение которого определяется углом а длина Действующая на этот элемент сила численно равна а проекция этой силы на ось будет Тогда

Но из рис. 70 видно, что Следовательно, так как то

где - длина хорды, стягивающей дугу АВ; q - интенсивность.

Задача 27. На консольную балку А В, размеры которой указаны на чертеже (рис. 71), действует равномерно распределенная нагрузка интенсивностью Пренебрегая весом балки и считая, что силы давления на заделанный конец - определены по линейному закону, определить значения наибольших интенсивностей этих сил, если

Решение. Заменяем распределенные силы их равнодействующими Q, R и R, где согласно формулам (35) и (36)

и составляем условия равновесия (33) для действующих на балку параллельны сил

Подставляя сюда вместо Q, R я R их значения и решая полученные уравнения, найдем окончательно

Например, при получим а при

Задача 28. Цилиндрический баллон, высота которого равна Н, а внутренний диаметр d, наполнен газом под давлением Толщина цилиндрических стенок баллона а. Определить испытываемые этими стенками растягивающие напряжения в направлениях: 1) продольном и 2) поперечном (напряжение равно отношению растягивающей силы к площади поперечного сечения), считая малым.

Решение. 1) Рассечем цилиндр плоскостью, перпендикулярной его оси, на две части и рассмотрим равновесие одной из них (рис.

72, а). На нее в направлении оси цилиндра действуют сила давления на дно и распределенные по площади сечения силы (действие отброшенной половины), равнодействующую которых обозначим Q. При равновесии

Распределенные нагрузки

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Размерность для линейной нагрузки - Н/м, для нагрузки распределенной по площади - Н/м 2 , для объемной (например при учете собственного веса элементов конструкции) - Н/м 3 .

Например, на рисунке 1.23, а приведена равномерно распределенная по длине , измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой

Q = q ∙ AB [Н],

приложенной в середине отрезка AB .

На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой

Q = q max ∙AB/2 ,

приложенной в точке C , причем AC = 2/3AB .

В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу

Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x) .

Рисунок 1.23

Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, – центральный угол, ось Ox – ось симметрии (рисунок 1.24).

Выделим элемент сектора с углом ∆φ и определим силу ∆Q , действующую на плоский элемент дуги:

∆Q = q ∙ ∆l = q ∙ R ∙ ∆φ . (1.14)

Рисунок 1.24

Ox будет

∆Q x = q ∙ R ∙ ∆φ∙ cosφ . (1.15)

В силу симметрии элемента трубы (с дугой AB ) относительно оси Ox проекция результирующей силы на ось Oy :

Q y = 0 , т.е. Q = Q x , (1.16)

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ] . Если цилиндр рассечен по диаметру (рисунок 1.25), то равна F = q ∙ d ∙ h (d – внутренний диаметр) или

F = p ∙ 2R ∙ h .

Разрывающие баллон по диаметру усилия:

S 1 = S 2 = S;
2S = F;
S = p∙h∙R
. (1.18)

Распределенные нагрузки

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Размерность для линейной нагрузки - Н/м, для нагрузки распределенной по площади - Н/м 2 , для объемной (например при учете собственного веса элементов конструкции) - Н/м 3 .

Например, на рисунке 1.23, а приведена равномерно распределенная по длине , измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой

Q = q ∙ AB [Н],

приложенной в середине отрезка AB .

На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой

Q = q max ∙AB/2 ,

приложенной в точке C , причем AC = 2/3AB .

В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу

Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x) .

Рисунок 1.23

Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, – центральный угол, ось Ox – ось симметрии (рисунок 1.24).

Выделим элемент сектора с углом ∆φ и определим силу ∆Q , действующую на плоский элемент дуги:

∆Q = q ∙ ∆l = q ∙ R ∙ ∆φ . (1.14)

Рисунок 1.24

Ox будет

∆Q x = q ∙ R ∙ ∆φ∙ cosφ . (1.15)

В силу симметрии элемента трубы (с дугой AB ) относительно оси Ox проекция результирующей силы на ось Oy :

Q y = 0 , т.е. Q = Q x , (1.16)

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ] . Если цилиндр рассечен по диаметру (рисунок 1.25), то равна F = q ∙ d ∙ h (d – внутренний диаметр) или

F = p ∙ 2R ∙ h .

Разрывающие баллон по диаметру усилия:

S 1 = S 2 = S;
2S = F;
S = p∙h∙R
. (1.18)

Поверхностные и объёмные силы представляют собой нагрузку, распределённую по некоторой поверхности или объёму. Такая нагрузка задаётся интенсивностью , которая представляет собой силу, приходящуюся на единицу некоторого объёма, или некоторой площади, или некоторой длины.

Особое место при решении ряда практически интересных задач занимает случай плоской распределённой нагрузки, приложенной по нормали к некоторой балке. Если вдоль балки направить ось , то интенсивность будет функцией координаты и измеряется в Н/м. Интенсивность представляет собой силу, приходящуюся на единицу длины.

Плоская фигура, ограниченная балкой и графиком интенсивности нагрузки, называется эпюрой распределённой нагрузки (Рис. 1.28). Если по характеру решаемой задачи можно не учитывать деформации, т.е. можно считать тело абсолютно твёрдым, то распределённую нагрузку можно (и нужно) заменить равнодействующей.



Разобьём балку на отрезков длиной

, на каждом из которых будем считать интенсивность постоянной и равной

, где –координата отрезка

. При этом кривая интенсивности заменяется ломаной линией, а нагрузка, приходящаяся на отрезок

, заменяется сосредоточенной силой

, приложенной в точке (Рис. 1.29). Полученная система параллельных сил имеет равнодействующую, равную сумме сил, действующих на каждый из отрезков, приложенную в центре параллельных сил.

Понятно, что такое представление тем точнее описывает реальную ситуацию, чем меньше отрезок

, т.е. чем больше число отрезков . Точный результат получаем, переходя к пределу при длине отрезка

, стремящейся к нулю. Предел, получаемый в результате описанной процедуры, представляет собой интеграл. Таким образом, для модуля равнодействующей получаем:


Для определения координаты точки приложения равнодействующей используем теорему Вариньона:

если система сил имеет равнодействующую, то момент равнодействующей относительно любого центра (любой оси) равен сумме моментов всех сил системы относительно этого центра (этой оси)

Записывая эту теорему для системы сил

в проекциях на ось и переходя к пределу при длине отрезков, стремящейся к нулю, получаем:


Очевидно, модуль равнодействующей численно равен площади эпюры распределённой нагрузки, а точка её приложения совпадает с центром тяжести однородной пластины, имеющей форму эпюры распределённой нагрузки.

Отметим два часто встречающихся случая.

,

(Рис. 1.30). Модуль равнодействующей и координата её точки приложения определяются по формулам:




В инженерной практике такая нагрузка встречается довольно часто. Равномерно распределённой в большинстве случаев можно считать весовую и ветровую нагрузку.



,

(Рис. 1.31). В этом случае:




В частности, давление воды на вертикальную стенку прямо пропорционально глубине .

Пример 1.5

Определить реакции опор ибалки, находящейся под действием двух сосредоточенных сил и равномерно распределённой нагрузки. Дано:


Найдём равнодействующую распределённой нагрузки. Модуль равнодействующей равен


плечо силы относительно точкиравно

Рассмотрим равновесие балки. Силовая схема представлена на Рис. 1.33.







Пример 1.6

Определить реакцию заделки консольной балки, находящейся под действием сосредоточенной силы, пары сил и распределённой нагрузки (Рис. 1.34).

Заменим распределённую нагрузку тремя сосредоточенными силами. Для этого разобъём эпюру распределённой нагрузки на два треугольника и прямоугольник. Находим

Силовая схема представлена на Рис. 1.35.



Вычислим плечи равнодействующих относительно оси

Условия равновесия в рассматриваемом случае имеют вид:






ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:

1. Что называется интенсивностью распределённой нагрузки?

2. Как вычислить модуль равнодействующей распределённой нагрузки?

3. Как вычислить координату точки приложения равнодействующей распределённой

нагрузки?

4. Чему равен модуль и какова координата точки приложения равномерно распределённой нагрузки?

5. Чему равен модуль и какова координата точки приложения линейно распределённой нагрузки?

Из сборника задач И.В.Мещерского: 4.28; 4.29; 4.30; 4.33; 4.34.

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА - теория и практика»: комплекты СР-2; СР-3.

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ № 4-5



В продолжение темы:
Балкон и лоджия

С древних времен наши предки пытались угадать в сновидениях перст судьбы и придавали снам колоссальное значение, наделяя каждый увиденный предмет или событие символичным...

Новые статьи
/
Популярные