Светодиодные индикаторы. Характеристики светодиодов: потребление тока, напряжение, мощность и светоотдача Светодиод hl1 технические характеристики

Светодиоды или СВЕТО излучающие ДИОДЫ (в английском варианте LED - Light Emitting Diode) хорошо известны каждому электронщику. Это полупроводниковые приборы, преобразующие электрический ток в световое излучение. Их основные достоинства: высокий КПД, близкое к монохромному излучение, миниатюрность, механическая прочность, высокая надёжность, малое тепловыделение, до 10 лет наработки без выключения питания. Наконец, светодиоды являются низковольтными приборами, а стало быть, максимально электробезопасными.

Первые промышленные образцы светодиодов красного цвета появились в 1962 г. (фирма General Electric Corp.). В 1976 г. были разработаны светодиоды оранжевого, зелёного и жёлтого цвета свечения, а в 1993 г. появились первые полупроводниковые излучатели синего цвета (фирма Nichia Corporation). В любительских конструкциях чаще всего применяют «красные» и «зелёные» светодиоды, реже - «синие» и «белые».

Характерные значения КПД у стандартных светодиодов - от 1 до 10%. Для сравнения, КПД парового двигателя составляет 5…7%. У мощных современных светодиодов этот показатель достигает 12…35%.

В Табл. 2.1 приведены параметры маломощных светодиодов с силой света не более 1000 МК д. Их особенностью является значительный технологический разброс вольт-амперной характеристики (ВАХ). Как следствие, для конкретного светодиода прямой ток / ПР и прямое напряжение V np известны лишь ориентировочно. При расчётах на это обычно закрывают глаза, поскольку в большинстве случаев от светодиода требуется констатация факта «включен» или «выключен».

Таблица 2.1. Параметры маломощных светодиодов общего применения

Условные напряжения 1.6; 1.7; 1.8; 3.5 В характеризуют начальную точку подъёма кривой ВАХ, соответственно, у «красного», «жёлтого», «зелёного» и «синего»/«белого» индикаторов. Именно эти цифры в дальнейшем будут указываться в электрических схемах возле обозначения светодиодов. Однако реальное рабочее напряжение У пр примерно на 0.1…0.4 В больше начального, что зависит от протекающего тока (Рис. 2.1).

Рис. 2.1. Типовые ВАХ маломощных светодиодов фирмы Kingbright.

Важные замечания.

1. Не следует устанавливать постоянный прямой ток / ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА.

2. Светодиоды допускают импульсный режим работы, при котором прямой ток / ПР можно увеличить в 3…6 раз до 60…120 мА с сохранением среднего тока за период не более 20…25 мА. При расчётах надо не забывать, что с повышением тока возрастает и напряжение. Например, для «зелёного» светодиода при токе 15 мА напряжение У ПР = 2.1 В, а при токе 75 мА V np = 2.7 В.

3. Красный цвет индикации не гарантирует того, что светодиод относится к группе с условным началом кривой ВАХ 1.6 В (хотя в большинстве случаев именно так оно и есть). «Красный» светодиод может иметь «зелёную» ВАХ с точкой подъёма 1.8 В. Всё зависит от химического состава, из которого изготавливается излучатель, а этот параметр при покупке на радиорынке априори неизвестен. Аналогичная ситуация и с мощными «зелёными» светодиодами, которые могут иметь «синюю» ВАХ с точкой подъёма 3.5 В.

4. В некоторых даташитах на светодиоды указывается максимально допустимое обратное напряжение У ОБР = 2…5 В. Но это всего лишь тестовое напряжение, при котором на заводе-изготовителе проверяется обратный ток утечки, равный нескольким десяткам микроампер.

5. Светодиод выходит из строя не от высокого обратного напряжения, а от превышения рассеиваемой на нём мощности. В исследованиях показано, что светодиоды зелёного и красного цвета имеют «стабилитронную» ВАХ с достаточно крутым изгибом. При обратном напряжении 12…35 В происходит обратимый пробой n-p-перехода. Если ток при пробое не превышает 2…4 мА, то мощность рассеяния остаётся в регламентируемых даташитом рамках 75…150 мВт.

Практический вывод - при напряжении питания MK в пределах 3..5 В можно не опасаться «перепутать» полярность при запаивании «красно-оранжево-жёлто зелёных» индикаторов. Все они гарантированно останутся целыми.

«Синие» и «белые» светодиоды в этом отношении гораздо более нежные. Они боятся электростатических потенциалов, которые могут накапливаться на одежде и на теле человека. Обратное напряжение для них не должно превышать 5 В и обращаться с ними надо примерно так, как с полевыми транзисторами.

На Рис. 2.2, а…ж показаны схемы подключения одиночных светодиодов к одной линии MK. На Рис. 2.3, a…M показаны схемы подключения одиночных светодиодов к нескольким линиям MK.

Рис. 2.2. Схемы подключения одиночных светодиодов к одной линии MK (начало):

а) стандартная схема ограничения тока через светодиод HL1 при помощи резистора R1. Для ориентира, у идеализированного MK Г 1Н = 4.75 В при токе нагрузки 5…10 мА и Г 1Н = 4.5 В при токе нагрузки 20 мА;

б) аналогично Рис. 2.2, а, но с инверсией сигнала на выходе МК Для ориентира, у идеализированного MK V OL = 0.15…0.3 В при токе нагрузки

5.. . 10 мА и V OL = 0.4…0.5 В при токе нагрузки 20 мА. Если выходы MK имеют симметричную нагрузочную способность, то между схемами на Рис. 2.2, а и на Рис. 2.2, б разницы нет;

в) прямое подключение светодиода HL1 к линии MK возможно, но только при низком напряжении питания. Рабочая точка К ПР = 2 В при / ПР = 15 мА. Однако в каждом конкретном случае надо сверяться с графиками нагрузочной способности линий MK согласно даташиту;

г) подключение светодиода HL1 к источнику повышенного напряжения +9 В через гасящий стабилитрон VD1. Проверочный расчёт - сумма напряжения питания MK (5 В) и напряжения стабилизации VD1 (5.6 В) должна быть больше, чем разность между повышенным напряжением (9 В) и падением напряжения на светодиоде HL1 (1.7…1.9 В); О

О Рис. 2.2. Схемы подключения одиночных светодиодов к одной линии MK (окончание):

д) светодиод HL1 имеет встроенный интегральный резистор, ограничивающий прямой ток. В даташите вместо сопротивления резистора указывается допустимое рабочее напряжение светодиода при токе не более 20 мА. Классификационный ряд при заказе: 3; 5; 12 В;

е) предполагается, что светодиод HL1 находится на значительном удалении от MK и связан с контактными площадками XI, Х? длинными проводами. Резисторы R1, R2 - защита по току, на случай обрыва проводов и замыкания их на металлический корпус прибора, который, как правило, соединяется с цепью GND («массой»);

ж) эффект плавного гашения светодиода HL1. В исходном состоянии на выходе MK НИЗКИЙ уровень, светодиод погашен. ВЫСОКИМ уровнем на выходе MK производится быстрое включение светодиода, а затем плавное уменьшение его яркости по мере заряда конденсатора C1. Диод VD1 помогает разряжаться конденсатору С/ при НИЗКОМ уровне на выходе MK.

Рис. 2.3. Схемы подключения одиночных светодиодов к нескольким линиям MK {начало):

а) включение светодиодов HL1…HLn производится независимо друг от друга при ВЫСОКОМ уровне на выходе MK. Резисторы R1…Rn ограничивают токи через светодиоды и определяют яркость их свечения. Суммарный ток через вывод питания +5 В при ВЫСОКОМ уровне на всех выходах не должен превышать 100…300 мА (смотреть в даташите на конкретный MK);

б) аналогично Рис. 2.3, а, но при активном НИЗКОМ уровне и с отдельным источником питания для светодиодов. Если выходы MK имеют симметричную нагрузочную способность и питание светодиодов составляет +5 В, то схемы на Рис. 2.3, а и на Рис. 2.3, б равноценны;

в) типовой приём сокращения числа резисторов. Применяется, если не требуется одновременное свечение нескольких индикаторов, иначе будет снижаться их яркость из-за повышенного напряжения на резисторе R1\ О

г) аналогично Рис. 2.3, в, но с «бегущим нулём» на выходах MK;

д) индикатор HL1 светится, когда на верхней линии MK устанавливается ВЫСОКИЙ, а на нижней - НИЗКИЙ уровень, при этом к выходам MK могут подсоединяться другие узлы;

е) MK формирует 8 градаций яркости светодиода HL1. Резисторы R1…R3 определяют динамический диапазон и степень линейности характеристики;

ж) для сверхъяркого светодиода HL1 требуется повышенный ток, что достигается запараллеливанием линий MK. На каждой из них уровни должны выставляться синхронно;

з) аналогично Рис. 2.3, ж, но с синхронными ВЫСОКИМИ уровнями на выходах MK;

и) светодиод HL1 индицирует наличие импульсов «бегущей единицы» на трёх выходах MK; к) автоматическая прозвонка длинного кабеля. На линиях MK программно формируется

«бегущая единица» (на одной линии ВЫСОКИЙ, на остальных - НИЗКИЙ уровень). Если произойдёт обрыв какой-либо жилы, то светодиод в этой цепи будет постоянно погашен; О

О Рис. 2.3. Схемы подключения одиночных светодиодов к нескольким линиям MK {окончание):

л) в исходном состоянии на всех выходах MK ВЫСОКИЕ уровни, индикаторы HL1, HL2, HL4 светятся. При аварии на одном или нескольких выходах MK устанавливается НИЗКИЙ уровень, соответствующий индикатор гаснет, при этом автоматически начинает светиться HL3\ м) при большом количестве светодиодов имеет смысл разгрузить силовые выводы MK, направив втекающий и вытекающий токи в разные цепи. В частности, светодиоды HL1…HL8снижают нагрузку на вывод +5 В MK, а светодиоды HL9…HL16 - на вывод GND MK.

Конструкция светодиодных индикаторов несколько сложнее. Конечно, при использовании специальной микросхемы управления ее можно упростить до предела, но тут притаилась маленькая неприятность. Большинство таких микросхем развивает на выходе ток не более 10 мА и яркость светодиодов в условиях автомобиля может оказаться недостаточной. Кроме того, наиболее распространены микросхемы с выходами на 5 светодиодов, а это только "программа-минимум". Поэтому для наших условий схема на дискретных элементах предпочтительней, ее можно расширять без особых усилий.

Простейший индикатор на светодиодах (рис.4) не содержит активных элементов и в питании поэтому не нуждается. Подключение - к магнитоле по схеме "mixed mono" или с разделительным конденсатором, к усилителю - "mixed mono" или напрямую.

Рис. 4

Схема предельно проста и не требует налаживания. Единственная процедура - подбор резистора R7. На схеме указан номинал для работы со встроенными усилителями головного устройства. При работе с усилителем мощностью 40...50 Вт сопротивление этого резистора должно быть 270...470 Ом. Диоды VD1...VD7 - любые кремниевые с прямым падением напряжения 0,7...1 В и допустимым током не менее 300 мА.

Светодиоды любые, но одного типа и цвета свечения с рабочим током 10...15 мА. Поскольку светодиоды "питаются" от выходного каскада усилителя, их количество и рабочий ток увеличить в этой схеме нельзя. Поэтому придется выбрать "яркие" светодиоды или найти для индикатора такое место, где он будет защищен от прямого освещения. Еще один недостаток простейшей конструкции - малый динамический диапазон.

Для улучшения работы необходим индикатор со схемой управления. Помимо большей свободы в выборе светодиодов можно простыми средствами сформировать шкалу любого типа - от линейной до логарифмической, или "растянуть" только один участок. Схема индикатора с логарифмической шкалой приведена на рис. 5. Пунктиром показаны необязательные элементы.


Рис. 5

Светодиоды в этой схеме управляются ключами на транзисторах VT1...VT5. Пороги срабатывания ключей задают диоды VD3...VD9. Подбирая их количество, можно изменять динамический диапазон и тип шкалы. Общую чувствительность индикатора определяют резисторы на входе. На рисунке приведены примерные пороги срабатывания для двух вариантов схемы - с одиночными и "сдвоенными" диодами. В основном варианте диапазон измерения - до 30 Вт на нагрузке 4 Ом, с одиночными диодами - до 18 Вт.

Светодиод HL1 светится постоянно, он обозначает начало шкалы, HL6 - индикатор перегрузки. Конденсатор C4 задерживает на 0,3...0,5 сек погасание светодиода, что позволяет заметить даже кратковременную перегрузку. Накопительный конденсатор C3 определяет время обратного хода. Оно, кстати, зависит от количества светящихся светодиодов - "столбик" от максимума начинает спадать быстро, а потом "притормаживает". Конденсаторы C1,C2 на входе устройства нужны только при работе со встроенным усилителем магнитолы. При работе с "нормальным" усилителем их исключают. Количество сигналов на входе можно увеличить, добавив цепочки из резистора и диода. Количество ячеек индикации можно увеличить простым "клонированием", главное ограничение - "пороговых" диодов должно быть не больше 10 и между базами соседних транзисторов должен быть хотя бы один диод.

Светодиоды можно использовать любые в зависимости от требований - от одиночных светодиодов до светодиодных сборок и панелей повышенной яркости. Поэтому на схеме приведены номиналы токоограничивающих резисторов для разных рабочих токов. К остальным деталям никаких специальных требований не предъявляется, транзисторы можно использовать практически любые структуры n-p-n с мощностью рассеяния на коллекторе не менее 150 мВт и двукратным запасом по току коллектора. Коэффициент передачи тока базы этих транзисторов должен быть не менее 50, а лучше - больше 100.

Эту схему можно несколько упростить, при этом в качестве побочного эффекта появляются новые свойства, весьма полезные для наших целей (рис.6).


Рис. 6

В отличие от предыдущей схемы, где транзисторные ячейки были включены параллельно, здесь использовано последовательное включение "столбиком". Пороговыми элементами являются сами транзисторы и открываются они по очереди - "снизу вверх". Но в данном случае порог срабатывания зависит от напряжения питания. На рисунке показаны примерные пороги срабатывания индикатора при напряжении питания 11 В (левая граница прямоугольников) и 15 В (правая граница). Видно, что с ростом напряжения питания больше всего смещается граница индикации максимальной мощности. В случае использования усилителя, мощность которого зависит от напряжения аккумулятора (а таких немало), подобная "автокалибровка" может принести пользу.

Однако плата за это - возросшая нагрузка на транзисторы. Через нижний по схеме транзистор протекает ток всех светодиодов, поэтому при использовании индикаторов с током более 10 мА транзисторы тоже потребуются соответствующей мощности. "Клонирование" ячеек еще более увеличивает неравномерность шкалы. Поэтому 6-7 ячеек - это предел. Назначение остальных элементов и требования к ним - те же, что и в предыдущей схеме.

Слегка модернизировав эту схему, получим другие свойства (рис.7). В этой схеме в отличие от ранее рассмотренных, нет светящейся "линейки". В каждый момент времени светится только один светодиод, имитируя движение стрелки по шкале. Поэтому потребление энергии минимально и в этой схеме можно применить маломощные транзисторы. В остальном схема не отличается от рассмотренных ранее.

Пороговые диоды VD1...VD6 предназначены для надежного отключения неработающих светодиодов, поэтому если будет наблюдаться слабая засветка лишних сегментов, необходимо использовать диоды с большим прямым напряжением или включить последовательно по два диода. "Клонирование" ячеек уменьшает яркость свечения верхних по схеме сегментов, для устранения этого вместо резистора R9 нужно вводить генератор тока. А мы договорились - не усложнять. Поэтому в данном случае 8 ячеек - это максимум.


Рис. 7

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Индикатор №1
VD1-VD6 Выпрямительный диод

1N4007

6 В блокнот
HL-HL6 Светодиод Любой 10-15 mA 6 В блокнот
R1 Резистор

68 Ом

1 В блокнот
R2 Резистор

33 Ом

1 В блокнот
R3 Резистор

22 Ом

1 В блокнот
R4 Резистор

15 Ом

1 В блокнот
R5 Резистор

12 Ом

1 В блокнот
R6 Резистор

10 Ом

1 В блокнот
R7 Резистор 100 - 470 Ом 1 В блокнот
С1 100 мкФ на 16В 1 В блокнот
Индикатор №2
VT1-VT5 Биполярный транзистор

КТ315В

5 В блокнот
VD1-VD9 Диод

КД522А

9 КД503, 1N4148 В блокнот
HL1-HL6 Светодиод До 30 мА 6 В блокнот
C1-C4 Электролитический конденсатор 10мкФ на 16В 4 В блокнот
R7-R11 Резистор

470 Ом

5 В блокнот
R12-R13 Резистор

1 кОм

2 В блокнот
Ток светодиода 10 мА
R1-R6 Резистор

1 кОм - 1.2 кОм

6 В блокнот
Ток светодиода 20 мА
R1-R6 Резистор

470 Ом - 680 Ом

6 В блокнот
Ток светодиода 30 мА
R1-R6 Резистор

330 Ом - 390 Ом

6 В блокнот
Индикатор №3
VT1-VT6 Биполярный транзистор

КТ503А

6 В блокнот
VD1-VD2 Диод

КД522А

2 1N4148 В блокнот
HL1-HL7 Светодиод до 30 мА 7 В блокнот
C1-C4 Электролитический конденсатор 10 мкФ на 16В 4 В блокнот
R1-R6 Резистор

1 кОм

6 В блокнот
R14-R15 Резистор

1 кОм

2 В блокнот
Ток светодиода 10 мА
R7-R13 Резистор

1 кОм - 1.2 кОм

7 В блокнот
Ток светодиода 20 мА
R7-R13 Резистор

470 Ом - 680 Ом

7 В блокнот
Ток светодиода 30 мА
R7-R13 Резистор

Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и . Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.

Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.

Характеристики светодиодов

Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Напряжение светодиодов

Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.

Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.

При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.

Светоотдача, угол свечения и мощность светодиодов

Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

Мощность лампы накаливания, Вт Соответствующая мощность светодиодного светильника, Вт
100 12-12,5
75 10
60 7,5-8
40 5
25 3

При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.

Цветовая температура LED-источников

Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.

Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.

Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:

Цвет свечения светодиодов Цветовая температура, К Варианты использования в освещении
Белый Теплый 2700-3500 Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания
Нейтральный (дневной) 3500-5300 Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве
Холодный свыше 5300 Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей
Красный 1800 Как источник декоративной и фито-подсветки
Зеленый -
Желтый 3300 Световое оформление интерьеров
Синий 7500 Подсветка поверхностей в интерьере, фито-подсветка

Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).

Типоразмеры SMD светодиодов и их характеристики

Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.

Основные параметры светодиодов SMD 2835

К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.

Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.

По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.

Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.

Характеристики светодиодов SMD 5050

В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.

LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.

Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.

Типовые характеристики светодиода SMD 5730

Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.

Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.

Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.

Характеристики светодиодов Cree

Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.

В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.

Статья по теме:

Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.

Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.

Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.

В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.

Схемы подключения светодиодов

Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.

Схема подключения светодиода к сети 220В

В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется с ограниченным током, во втором – специальный , стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.

Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.

Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.

Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.

Как рассчитать сопротивление для светодиода

При расчете сопротивления для светодиода руководствуются формулой:

U = IхR ,

где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:

R = U/I .

Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.

Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.

В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.

Схемы параллельного и последовательного подключения светодиодов

При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.

Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.

Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.

Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться. Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.

Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.

Как подключить светодиоды к 12 Вольтам

В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.

Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.

Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.

Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.

Как проверить светодиод мультиметром

Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.

Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

Что можно сделать из светодиодов своими руками

Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.

Сборка стабилизатора тока для светодиодов своими руками

Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.

Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.

Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.

При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.

ДХО из светодиодов своими руками

Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.

Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².

Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.

Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.

Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.

Как сделать, чтобы светодиоды мигали

Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.

Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.

Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.

Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.

Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.

Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.

Сборка цветомузыки на светодиодах своими руками

Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).

На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.

Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.

Конструкция индикатора напряжения на светодиодах своими руками

Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.

Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.

Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.

Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.

Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать предельную осторожность. Прикосновение не защищенным участком тела человека к оголенным участкам схемы подключенной к электрической сети может нанести серьезный урон здоровью, вплоть до остановки сердца.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера
светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы
LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)
E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)
E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии "LL" GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора . По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.



В продолжение темы:
Канализация

Начинающие хозяйки испытывают сложности с приготовлением блинов. После всех манипуляций они получаются сухими или слишком толстыми. Чтобы справиться с задачей, нужно соблюдать...

Новые статьи
/
Популярные