Направление реакций в опорах. Роль шарнира в строительной конструкции

Cтраница 1


Шарнирно подвижная опора (опора В на рис. 118) дает возможность, помимо поворотов, перемещать конец балки параллельно опорной плоскости. В соответствии с этим реакция такой опоры проходит через центр шарнира и.  

Первый тип - цилиндрическая подвижная или шарнирно подвижная опора. Она состоит из верхнего балансира, прикрепленного к системе, нижнего балансира, цилиндрического шарнира, помещенного между балансирами, и катков, могущих перемещаться по опорной плоскости. Такая опора допускает поворот системы вокруг шарнира и поступательное перемещение вдоль опорной плоскости.  

Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости / - / и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция - в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.  

Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости / - / и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция-в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.  

При расчете балок различают три основных вида опор (три вида закрепления концов балок): шарнирно подвижная опора; шарнирно неподвижная опора; жесткая заделка конца балки.  

Тот факт, что главный параметрический резонанс возникает при 0 2Q, легко поддается объяснению - за то время, которое необходимо, чтобы любая точка оси балки совершила один цикл колебания, центр сечения, совпадающего с шарнирно подвижной опорой, совершает два цикла колебания вдоль оси стержня.  

Правому свободному концу действительной балки в этом сечении фиктивной балки соответствует заделка. В сечении над шарнирно подвижной опорой прогиб действительной балки равен нулю, а угол наклона отличен от нуля. Следовательно, в это сечение фиктивной балки следует ввести шарнир, в котором фиктивный изгибающий момент М всегда равен нулю, а фиктивная поперечная сила Q отлична от нуля.  

Шарнирно подвижная опора (рис. 7.6) допускает перемещение и балки в горизонтальном направлении и поворот балки относительно опоры на некоторый угол ср. В соответствии с этим в шарнирно подвижной опоре возникает только вертикальная реакция, которую будем обозначать R. Закрепление балки с помощью такой опоры накладывает на нее одну связь.  


Расчетные схемы валов и осей редукторов представляют в виде ступенчатых - или гладких балок на шарнирных опорах. Подшипники, одновременно воспринимающие осевые и радиальные нагрузки, заменяют шар-нирно неподвижными опорами, а подшипники, воспринимающие только радиальные силы - шарнирно подвижными опорами. Положение шарнирной опоры определяют с учетом угла контакта ос подшипника качения (с. При а 0 для радиальных подшипников положение опоры принимают в середине ширины подшипника. Невращающиеся относительно вектора нагрузки оси сателлитов могут рассматриваться как статически неопределимые балки с упругой заделкой.  

Снижение концентрации напряжений в месте посадки с гарантированным натягом.| Рациональная форма шлицевых участков валов.  

Расчетные схемы валов и осей редукторов представляют в виде ступенчатых или гладких балок на шарнирных опорах. Подшипники, одновременно воспринимающие осевые и радиальные нагрузки, заменяют шар-нирно неподвижными опорами, а подшипники, воспринимающие только радиальные силы - шарнирно подвижными опорами. Положение шарнирной опоры определяют с учетом угла контакта ос подшипника качения (с. При а 0 для радиальных подшипников положение опоры принимают в середине ширины подшипника. Невращающиеся относительно вектора нагрузки оси сателлитов могут рассматриваться как статически неопределимые балки с упругой заделкой.  

Рассмотрим теперь сечение действительной балки, имеющее промежуточный шарнир. В этом сечении прогиб и угол наклона не равны нулю. Более того шарнир допускает излом изогнутой оси балки, следовательно, углы наклона касательной слева и справа от шарнира должны быть различны. Чтобы удовлетворить указанным условиям, нужно в это сечение фиктивной балки ввести шарнирно подвижную опору. Тогда фиктивный изгибающий момент М над опорой будет отличен от нуля, следовательно, прогиб в этом сечении действительной балки будет также отличен от нуля.  

Страницы:      1

Слушатели курса "Расчет строительных конструкций - с нуля! ", который я веду в проекте Dystlab Education, периодически просят меня объяснить им такие понятия, как "шарнир", "шарнирная опора". Видимо, понимание этих важных, с точки зрения работы сооружения, элементов вызывает у начинающих проектантов некоторые трудности.

Различные словари и вики определяют шарнир как "вращательную кинематическую пару", что терминологически больше относится к машиностроению (элементам машин и механизмов), нежели к строительным конструкциям, хотя принцип действия шарнира везде одинаковый. Шарнир - устройство, которое соединяет два элемента таким образом, чтобы они могли вращаться относительно одной точки или оси.

Различные схемы применения шарниров продемонстрированы в следующих видео. В первом видео, шарниры применяются для оконных и дверных систем, во втором - для гиростабилизации камеры (используется не один, а несколько шарниров):

Видео 1. Примеры шарнирных петель

Видео 2. Шарниры в составе сложного механизма

Из этих роликов должна стать понятной сама концепция: шарнир нужен там, где не требуется жестко фиксировать элемент, а нужно дать ему возможность вращаться.

Шарниры в строительных конструкциях

В зданиях и сооружениях шарниры применяются, как правило, в наиболее ответственных узлах - опорах. Иногда шарниры внедряют в какую-то "внутреннюю" часть конструкции:


Опорная часть пролетного строения моста


Крепление каната на временных опорах - тоже шарнирное


Шарнир как часть несущей конструкции в здании гражданского назначения


Пешеходный мост, реализованный по схеме "трехшарнирная арка" (редкая конструкция!)


Шарнирная опора аттракциона "колесо обозрения"

Шарниры в расчетных схемах

Так или иначе, проектирование конструкции начинается с разработки ее расчетной схемы . Рассмотрим несколько примеров простейших расчетных схем:


Рисунок 1. Примеры расчетных схем с шарнирными опорами

Удивляет вас это или нет, но на всех трех схемах изображен один и тот же тип опирания конструкции - шарнирное. Обратите внимание, что левая опора в каждой схеме "повернута" на какой-то угол. Это сделано лишь с целью подчеркнуть, что сейчас мы работаем не с реальной конструкцией, а с её виртуальным аналогом, упрощенной моделью (расчетной схемой). А на расчетной схеме важно отметить только те особенности, которые принципиально влияют на работу конструкции: в данном случае это два опорных стержня, которыми конструкция крепится к земле.

Вот еще пример расчетной схемы, взятый из пояснительной записки проекта путепровода 1905 года:


Рисунок 2. Шарнирно-опертая балка, проект 1905 г.

Справа (фиг. 8, рис. 2) показана простая балка на двух опорах, а черными треугольниками показаны шарнирно-подвижная и шарнирно-неподвижная опоры (правда, сложно узнать где какая, но это уже вопрос к авторам проекта, инженерам Е. О. Патону и П. Я. Каменцеву). Как видим, единого правильного варианта в обозначении шарнирной опоры нет, и как этот элемент показывать на схемах - решать вам.

Что означает кружок

Как легко убедиться, на схемах шарнир символизирует маленький кружок. Вокруг этого центра происходит вращение опорного сечения конструкции:

Рисунок 3. Сечения конструкции A, B вращаются при изгибе вокруг шарнирных опор

Перемещения и реакции

Шарнир допускает вращение сечения вокруг своего центра. Поскольку в этой точке разрешены угловые перемещения, то соответствующий опорный момент отсутствует. В этом состоит основное назначение шарнира в строительной конструкции - обнулять моменты, появляющиеся в процессе изгиба:


Рисунок 4. Жесткое защемление (1) и шарнирное опирание (2) балки

В чем разница между подвижной и неподвижной опорами?

Вы наверняка обратили внимание, что на рисунках 1, 3, 4 балки лежат на разных опорах: слева опора нарисована тремя кружка ми и двумя соединительными линиями, а справа - двумя кружка ми и одной линией. Почему так?

Каждая соединительная линия (короткий отрезок в изображении опоры) моделирует крепление данного узла к земле, поэтому линейные перемещения балки в этом направлении запрещены. Так, балка не может прогибаться вниз в опорных сечениях; и в начале, и в конце конструкции нарисованы вертикальные или наклонные стержни, поддерживающие балку. Напомню, что наклонную конструкцию всегда можно спроецировать на взаимно перпендикулярные оси (вертикальную и горизонтальную), поэтому схема 2 на рисунке 1 принципиально не отличается от остальных.

Важно также понимать назначение единственного горизонтального опорного стержня. Он запрещает горизонтальное перемещение балки (в направлении продольной оси), но только того сечения, в котором он установлен. Это классическая шарнирно-неподвижная опора:


Рисунок 5. Какие перемещения запрещают и разрешают шарнирные опоры

На рисунке 5 правая опора называется шарнирно-подвижной, так как допускает смещение правого конца балки в горизонтальном направлении. Это важное обстоятельство для учета удлинений и укорочений конструкции вследствие, например, температурных колебаний.

Выводы

Шарнир является важным элементом конструкции: он позволяет сечениям, которые к нему прикреплены, вращаться вокруг оси шарнира. Шарнир обнуляет опорные моменты.

На расчетной схеме шарнир показывают, как правило, кружком. Шарнирно-подвижная и шарнирно-неподвижная опоры являются одним из самых распространенных типов опирания балочных систем. Обе они имеют шарниры и допускают поворот опорного сечения, а шарнирно-подвижная опора допускает также горизонтальные перемещения соответствующего конца балки.

Принято говорить, что опоры крепятся "к земле", однако не следует понимать это буквально. Нередко "землей" служит другой элемент конструкции, большей жесткости.

Для многих начинающих проектировщиков основной проблемой является выбор расчетной схемы: где должны быть шарниры, а где – жесткие узлы? Как понять, что выгодней, и как разобраться, что вообще нужно в конкретном узле конструкции? Это очень обширный вопрос, надеюсь, данная статья немного внесет ясности в столь многогранный вопрос.

Что такое узлы опирания и обозначение этих узлов на схемах

Начнем с самой сути. Каждая конструкция должна иметь опору – как минимум она не должна упасть с высоты, на которой ей положено находиться. Но если копнуть глубже, для надежной работы элемента, нам мало запретить ему падать.

Как может сместиться любой элемент в пространстве? Во-первых, это может быть перемещение по одной из трех плоскостей – по вертикали (ось Z), по горизонтали (оси Х и У). Во-вторых, это может быть поворот элемента в узле вокруг тех же трех осей.

Таким образом, мы имеем целых шесть возможных перемещений (а если учесть еще и направление плюс-минус, то их не шесть, а двенадцать), которые еще называют степенями свободы – и это очень наглядное название. Если конструкция висит в воздухе (нереальная ситуация), то она полностью свободна, ничем не ограничена. Если в каком-то месте под ней появляется опора, не дающая перемещаться по вертикали, значит одна из степеней свободы у элемента в месте опоры ограничена по оси Z. Примером такого ограничения является свободное опирание металлической балки на гладкой, допускающей скольжение поверхности – она не упадет за счет опоры, но может при определенном усилии сдвинуться по оси Х и У, либо повернуться вокруг любой оси. Забегая вперед, уточним важный момент: если у элемента в узле не ограничен поворот, этот узел является шарнирным . Так вот, такой простейший шарнир с ограничением только по одной оси обозначается обычно следующим образом:


Расшифровать такое обозначение просто: кружочки означают наличие шарнира (т.е. отсутствие запрета поворота элемента в этой точке), палочка – запрет перемещения в одном направлении (обычно из схемы сразу становится понятно – в каком именно – в данном случае запрет по вертикали). Горизонталь со штриховкой условно обозначает наличие опоры.

Следующий вариант ограничения степеней свободы – это запрет перемещения в направлении двух осей. Для той же металлической балки это могут быть оси Z и Х, а по У она может переместиться при приложении к ней усилия; повороты ее, как видно, тоже ничем не ограничены.


Как вообще представить отсутствие ограничения поворотов? Если эту балку попытаться закрутить вокруг собственной оси (допустим, опереть на нее перекрытие только с одной стороны – тогда под весом перекрытия балка начнет крутиться), то ничто не помешает этому кручению, балка по всей длине начнет опрокидываться под действием крутящей силы. Точно также если в центре балки приложить вертикальную нагрузку, балка изогнется и в местах опирания свободно повернется вокруг оси У (слева – по часовой стрелке, справа – против). Вот это мы и понимаем как шарнир.

Спойлер: «Важные нюансы в конструировании узлов опирания»

Хочется сразу оговориться, что в строительстве идеальных шарниров и защемлений не бывает. Всегда есть какая-то условность. Допустим, мы игнорируем силу трения и считаем, что по оси У перемещение балки ничем не ограничено. С опытом обычно приходит способность видеть, жесткий или шарнирный перед нами узел. А еще очень важно научиться избегать неполного защемления (когда при небольших усилиях поворота конструкции нет, а при возрастании воздействующей силы опора не выдерживает, и поворот происходит). Такие ситуации провоцируют непрогнозируемое поведение конструкции – ее считали на одну расчетную схему, а работать приходится по другой.

Допустим, есть жесткий узел опирания балки в раме, который обеспечен путем приварки балки к колонне. Но сварной узел рассчитан неверно и шов не выдерживает приложенного усилия и разрушается. Балка продолжает опираться на колонну, но уже может повернуться на опоре. При этом кардинально меняется эпюра изгибающих моментов: на опорах моменты стремятся к нулю, зато пролетный момент возрастает. А балка была рассчитана на защемление и не готова к восприятию возросшего момента. Так и происходит разрушение. Поэтому жесткие узлы всегда должны быть рассчитаны на максимально возможную нагрузку.

Такой шарнир обозначается следующим образом.


Слева и справа обозначения равноценны. Справа оно более наглядное: 1 – горизонтальный стержень ограничен в узле в перемещении по вертикали (вертикальная палочка с кружочками на концах) и по горизонтали (горизонтальная палочка с кружочками на концах); 2 – вертикальный стержень также ограничен в узле в перемещении по вертикали и по горизонтали. Слева также очень распространенное обозначение точно такого же шарнира, только палочки расположены в виде треугольника, но то, что их две, означает, что ограничение перемещений идет по двум осям – вдоль оси элемента и перпендикулярно его оси. Особо ленивые товарищи могут вообще не рисовать кружочки, и обозначать такой шарнир просто треугольником – такое тоже встречается.

Теперь рассмотрим, что же означает классическое обозначение шарнирно опирающейся балки.


Это балка, имеющая две опоры, а в левой еще и ограниченная в перемещении по горизонтали (если бы этого не было, система не была бы устойчивой – есть такое условие в сопромате – у стержня должно быть три ограничения перемещений, в нашем случае два ограничения по Z и одно по Х). Конструктор должен продумать, как обеспечить соответствие опирания балки расчетной схеме – об этом никогда нельзя забывать.

И последний случай для плоской задачи – это ограничение трех степеней свободы – двух перемещений и поворота. Выше было сказано, что для любого элемента степеней свободы шесть (или двенадцать), но это для трехмерной модели. Мы же обычно в расчете рассматриваем плоскую задачу. И вот мы пришли к ограничению поворота – это классическое понятие жесткого узла или защемления – когда в точке опирания элемент не может ни сдвинуться, ни повернуться. Примером такого узла может служить узел заделки сборной железобетонной колонны в стакан – она настолько глубоко замоноличена, что возможности как сместиться, таки и повернуться у нее нет.


Глубина заделки у такой колонны строго расчетная, но даже по виду мы не можем представить, что колонна на рисунке слева сможет повернуться в стакане. А вот правая колонна – запросто, это явный шарнир, и так конструировать защемление недопустимо. Хотя и там, и там колонна погружена в стакан и паз заполнен бетоном.

Больше вариантов защемления будет по ходу статьи. Сейчас разберемся с обозначением защемления. Оно классическое, и особого разнообразие в отличии от шарниров здесь не наблюдается.


Слева показан горизонтальный элемент, защемленный на опоре, справа – вертикальный.

И напоследок – о шарнирных и жестких узлах в рамах. Если узел соединения балки с колонной жесткий, то он показывается либо без условных обозначений вообще, либо с закрашенным треугольничком в углу (как на верхних двух рисунках). Если же балка опирается на колонны шарнирно, на концах балки рисуются кружочки (как на нижнем рисунке).


Как законструировать шарнирный или жесткий узел

Опирание плит, балок, перемычек.

Первое, что следует запомнить при конструировании узлов – зачастую шарнир от защемления отличает глубина опирания.

Если плита, перемычка или балка опирается на глубину, равную или меньшую высоте сечения, и при этом не выполнено никаких дополнительных мероприятий (приварка к закладным элементам, препятствующая повороту и т.п.), то это всегда чистый шарнир. Для металлических балок считается шарнирным опирание на 250 мм.

Если опирание больше двух – двух с половиной высот сечения элемента, то такое опирание можно считать защемлением. Но здесь есть нюансы.

Во-первых, элемент должен быть пригружен сверху (кладкой, например), причем веса этого пригруза должно быть достаточно, чтобы воспринять усилие в элементе на опоре.

Во-вторых, возможно другое решение, когда поворот элемента ограничивается путем приварки к закладным деталям. И здесь нужно четко разбираться в особенностях конструирования жестких узлов. Если балка или приварена внизу (такое часто встречается и в металлоконструкциях, и в сборном железобетоне – к закладным в опоре привариваются закладные в балке или плите), то это никак не мешает ей повернуться на опоре – это лишь препятствует горизонтальному перемещению элемента, об этом мы говорили выше. А вот если верхняя часть балки надежно заанкерена сваркой на опоре (это либо рамные узлы в металле, либо ванная сварка верхних выпусков арматуры в сборных ригелях – в жестких узлах каркаса, либо сварка закладных элементов в узлах опирания балконных плит, которые обязательно должны быть защемлены, т.к. они консольны), то это уже жесткий узел, т.к. явно препятствует повороту на опоре.

На рисунке ниже выбраны шарнирные и жесткие узлы из типовых серий (серия 2.440-1, 2.140-1 вып. 1, 2.130-1 вып. 9). По ним наглядно видно, что в шарнирном узле крепление идет внизу балки или плиты, а в жестком – вверху. Уточнение: в узле опирания плиты анкер не дает жеского узла, это гибкий элемент, который лишь препятствует горизонтальному смещению перекрытия.


Но законструировать узел правильно – это полдела. Нужно еще сделать расчет всех элементов узла, выдержат ли они максимальное усилие, передаваемое от элемента. Здесь нужно рассчитать и закладные детали, и сварные швы, и проверить кладку в случае, если пригруз от нее учитывается при конструировании.

Соединение колонн с фундаментами.

При опирании металлических колонн определяющим фактором является количество болтов и то, как законструирована база колонны. О металле здесь я распространяться не буду, т.к. это не мой профиль. Напишу только, что если в фундаменте для крепления колонны лишь два болта, то это стопроцентный шарнир. Также если стойка приваривается к закладной детали фундамента через пластину, это тоже шарнир. Остальные случаи подробно приведены в литературе, есть узлы в типовых сериях – в общем, информации много, здесь запутаться сложно.

Для сборных железобетонных колонн используется их жесткая заделка в стакан фундамента (об этом речь шла выше). Если вы откроете «Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений», там вы сможете найти расчет всех элементов этого жесткого узла и принципы его конструирования.

При шарнирном узле колонна (столб) просто опирается на фундамент безо всяких дополнительных мероприятий или заделана в неглубокий стакан.

Соединение монолитных конструкций.

В монолитных конструкциях жесткий узел или шарнир всегда определяется наличием правильно заанкеренной арматуры.

Если на опоре арматура плиты или балки не заведена в конструкцию опоры на величину анкеровки или даже нахлестки, то такой узел считается шарнирным.

Так на рисунке ниже показаны варианты опирания монолитных плит из Руководства по конструированию ЖБК. Рисунок (а) и (б) – это жесткое соединение плиты с опорой: в первом случае верхняя арматура плиты заводится в балку на длину анкеровки; во втором – плита защемляется в стене также на величину анкеровки рабочей арматуры. Рисунок (в) и (г) – это шарнирное опирание плиты на балку и на стену, здесь арматура заведена на опору на минимально допустимую глубину опирания.


Рамные узлы соединения монолитных ригелей и колонн в железобетоне выглядят еще серьезней, чем опирание плит на балки. Здесь верхняя арматура ригеля заводится в колонну на величину одной и двух длин анкеровки (половина стержней заводится на одну длину, половина – на две).

Если в узле железобетонного каркаса арматура и балки, и колонны проходит насквозь и дальше идет больше чем на длину анкеровки (например, какой-то средний узел), то такой узел считается жестким.

Чтобы соединение колонн с фундаментом было жестким, из фундаментов должны быть сделаны выпуски достаточной длины (не менее величины нахлестки, подробнее – в Руководстве по конструированию), и эти же выпуски должны быть заведены в фундамент на длину анкеровки.

Аналогично в свайном ростверке – если длина выпусков из сваи меньше, чем длина анкеровки, соединение ростверка со сваей жестким считаться не может. Для шарнирного соединения длину выпусков оставляют 150-200 мм, больше не желательно, т.к. это будет пограничное состояние между шарниром и жестким узлом – а ведь расчет делался как для чистого шарнира.

Если нет места для того, чтобы разместить арматуру на длину анкеровки, проводят дополнительные мероприятия – приварку шайб, пластин и т.п. Но такой элемент должен быть обязательно рассчитан на выкалывание (что-то вроде расчета анкеров закладных деталей, его можно найти в Пособии по проектированию ЖБК).

Также на тему шарниров и защемления можно прочитать .

Опорами будем называть кинематические связи, соединяющие конструкцию с неподвижным основанием. Опоры могут быть трех типов:

1) шарнирно-подвижные, 2)шарнирно-неподвижные и 3) защемляющие (заделки). Не вдаваясь в подробности технической реализации опорных устройств, которые в различных областях техники могут быть разными, рассмотрим принципы их работы.

Подвижная шарнирная опора пространственной конструкции схематично изображена на рис.1.3. Такая опора допускает поворот опираемой конструкции вокруг трех осей x,y,z и поступательные перемещения в направлении осей x и y .

Иначе говоря, подвижная шарнирная опора пространственной конструкции ограничивает перемещение только в одном направлении – перпендикулярно опорной плоскости. Такую опору условно изображают, как показано на рис.1.3,б.

Неподвижную шарнирную опору можно представить как шар, входящий в сферические углубления, сделанные в основании и опираемом теле (рис.1.4,а). Такая опора допускает только повороты вокруг осей x,y,z. Она эквивалентна трем кинематическим связям. Условное обозначение шарнирной неподвижной опоры показано на рис.1.4,б.


Если нижнее основание шарнирной опоры поставить на катки, то получится шарнирная подвижная опора, допускающая поворот вокруг трех осей и перемещение в одном направлении. Такая опора и ее условное обозначение показаны на рис.1.5,а и 1.5,б соответственно.


Защемляющая опора имеет шесть кинематических связей – три линейных и три угловых, т.е. защемляющая опора препятствует перемещениям опираемого тела в направлении осей x,y,z и поворотам вокруг этих осей (рис.1.6).

Опоры для плоских конструкций могут быть получены как частные случаи пространственных. Защемляющая опора плоской конструкции имеет три кинематических связи (рис.1.7,а), шарнирно-неподвижная – две (рис.1.7,б), а шарнирно-подвижная – одну кинематическую связь (рис.1.7,в).


Поскольку в качестве строительных сооружений можно использовать только неизменяемые и неподвижные системы, рассмотрим правила образования таких систем.

Шарниром называется устройство, связывающее тела и позволяющее совершать вращение одного тела относительно другого.

Цилиндрический шарнир допускает вращение тел вокруг одной оси (и скольжение вдоль нее).

Шарнирно-неподвижная опора препятствует любому поступательному движению, но дает возможность свободно вращаться вокруг оси шарнира.

Реакция шарнирно-неподвижной опоры проходит через центр шарнира О и лежит в плоскости перпендикулярной к оси шарнира, но ее модуль и направление неизвестны.

Условные обозначения:

Рис.1.10

Шарнирно-подвижная опора (шарнирно-неподвижная опора поставленная на катки) не препятствует перемещению параллельно опорной поверхности. Если не учитывать трения катков, то линия действия реакции такой опоры проходит через центр шарнира перпендикулярно опорной поверхности. Неизвестен только модуль этой реакции.

Условные обозначения:

Шаровой шарнир. Шаровым шарниром называется устройство, позволяющее сочлененным телам, имеющим общую точку сочленения, совершать вращение в пространстве относительно друг друга вокруг общей точки. Шаровой шарнир состоит из сферической чаши, находящейся на одном теле, и сферического выступа того же диаметра на другом. Реакция в шаровом шарнире может иметь любое направление в пространстве.

Жесткая заделка.


В случае заделки одного тела в другое реакция связи состоит из силы и пары сил с моментом . Величина и направление реакции определяется из общих уравнений равновесия твердого тела.

1.5. Пример. На невесомую трехшарнирную арку действует горизонтальная сила . Определить линию действия реакции (реакции связи в точке А).

Решение: Рассмотрим правую часть арки отдельно. В точках В и С приложим силы реакции связей и . Тело под действием двух сил находится в равновесии. Согласно аксиоме о равновесии двух сил, силы и равны по величине и действуют вдоль одной прямой в противоположные стороны. Таким образом направление силы нам известно (вдоль линии ВС).



Рис.1.13

Рассмотрим левую часть арки отдельно. В точках А и С приложим силы реакции связей и . Сила , действие равно противодействию. На тело действуют три силы, направления двух сил (и .) известно. Согласно теореме о трех силах линии действия всех трех сил пресекаются в одной точке. Следовательно, сила направлена вдоль линии AD.

1.6. Пример. Однородный стержень закреплен шарнирно в точке А и опирается на гладкий цилиндр. Определить линию действия реакции (реакции связи в точке А).



В продолжение темы:
Сад и огород

У интеллигенции дореволюционной России была своя любимая святая: Иулиания Лазаревская или Муромская. Она была примером для всех людей, видевших свое предназначение в служении...

Новые статьи
/
Популярные