Калибровка датчиков температуры. Калибровка датчиков температуры Наименование неисправности и внешнее проявление

Декабрь 2012

Датчики имеют критически важное значение для правильного управления процессами, что зачастую не учитывается при модернизации существующих систем. Точность датчиков должна быть тщательно проверена, иначе всякая модернизация теряет смысл.

Многие производители оборудования обещают простое, как «дважды два», включение заменяемых модулей системы, которые не требуют замены существующих сетей, проводки, системных корпусов и источников питания, и при этом сокращение времени простоя с недель и месяцев до «дня и меньше».

Эффективность датчиков

На самом деле все обстоит немного по-другому. Обновление систем для достижения более высокого уровня управления предприятием при помощи компьютеров и программного обеспечения, без оценки эффективности датчиков, которые снабжают эти системы данными, является бесполезным занятием. Чтобы правильно воспринимать и передавать данные технологических параметров, датчики должны быть точными.

Датчики давления

Точность датчиков давления, составляет, как правило, от 0,25% диапазона измеряемого давления. Для сценариев применения с менее строгими требованиями, точность может быть примерно в районе 1,25% диапазона.

Точность датчика давления зависит от того, насколько хорошо датчик откалиброван и как долго он может сохранять эту калибровку. Первоначальная калибровка промышленных датчиков давления на калибровочной станции достигается путем применения постоянного источника давления, например, дедвейт тестера. После того, как датчик давления установлен, его точность может быть оценена с учетом влияния на первоначальную точность калибровки воздействия окружающей среды, воздействия статического давления и др.

Автоматизированные системы калибровки работают с помощью программируемого источника давления для производства заданных сигналов давления, применяемых к датчику, который должен быть откалиброван. Вначале записываются показания датчика до калибровки. Далее датчик тестируется с увеличением и уменьшением входных сигналов для учета любого появления эффекта гистерезиса. Затем система сравнивает полученные данные с критериями приемлемости калибровки для датчиков давления и автоматически определяет, должен ли датчик быть откалиброван. Если это так, система обеспечивает необходимые сигналы к датчику, чтобы откалибровать его и держит входное значение постоянным на протяжении промежутка, пока вносятся корректировки, и низшее давление, на котором он должен быть откалиброван. После этого система выдает отчет, который включает в себя данные до и после калибровки и сохраняет их для анализа тенденций и обнаружения зарождающегося отказа.

Датчики температуры

Типичный вид промышленных датчиков температуры, термометр сопротивления (ТС), как правило, не достигает точности более 0,05 - 0,12°C при 300°C, при этом, обычно, требуется обеспечить точность более чем 0,1°С при 400°C. Процесс установки термометров сопротивления также может приводить к дополнительным ошибкам в точности. Другой распространенный вид датчика температуры, термопара, как правило, не может обеспечить точность лучше, чем 0,5°C при температурах до 400°C. Чем выше температура, тем меньшую точность термопары обычно можно достичь.

Калибровка термометров сопротивления

Точность датчика температуры устанавливается путем калибровки, сравнивая его показания с универсальной калибровочной таблицей или индивидуальной калибровкой в высокоточной среде. ТС, в отличие от термопары, могут быть «очищены» и перекалиброваны после установки. Промышленные датчики температуры, как правило, калибруются в резервуарах со льдом, водой, маслом или песком, а также в печи, или путем комбинирования этих методов. Тип калибровочного резервуара зависит от выбранного температурного диапазона, требований к точности и от применения датчиков. Процесс калибровки обычно включает в себя измерение температуры калибровочного резервуара с использованием стандартного термометра. Для индивидуально калиброванных ТС, точность обеспечивает процесс калибровки, который в свою очередь зависит от точности оборудования, используемого для калибровки, а также ошибок, таких как гистерезис, самонагревание, интерполяция и ошибки при монтаже.

Калибровка термопары

Если ТС может быть перекалиброван и после установки, то термопара - нет. Термопару, которая потеряла свою калибровку, следует заменить. Промышленные термопары обычно не калибруются индивидуально. Вместо этого, их показания сравниваются со стандартными справочными таблицами. Для калибровки используются, как правило, один из двух методов: метод сличения (в котором ЭДС термопары сравнивается с эталонным датчиком) или метод фиксированной точки (ЭДС термопары измеряется в нескольких установленных состояниях). При оценке точности датчика температуры, важно учитывать не только калибровку самого датчика, но также влияние установки датчика и условий технологического процесса на эту точность.

Датчики. Как оценить время отклика?

Для отображения данных с частотой в соответствии с требованиями установки или отраслевыми нормами, датчики должны быть достаточно быстрыми в выявлении резкого изменения значения параметров процесса. Точность и время отклика по большей части являются независимыми друг от друга показателями. Так как оперативность датчиков имеет важнейшее значение для производственных систем, работы по модернизации систем должны начинаться с ее тщательной оценки, наряду с оценкой точности и надежности датчиков.

В то время, как точность датчика может быть восстановлена путем повторной калибровки, время отклика является неотъемлемой характеристикой, которая обычно не может быть изменена после изготовления датчика. Два основных метода для оценки времени отклика датчиков, это тест погружения (для датчиков температуры) и линейный тест (для датчиков давления).

Калибровка и время отклика датчиков, в особенности датчиков температуры, зависит в большой степени от условий технологического процесса, в том числе статического давления, температуры процесса, температуры окружающей среды и скорости потока жидкости.

Проверка без отрыва от производства

Существуют некоторые методы, которые часто упоминаются как тестирование на месте или он-лайн тестирование. Они были разработаны для проверки калибровки и времени отклика датчиков, уже используемых в каком-либо процессе. Для датчиков температуры, тест LCSR (Loop Current Step Response ) будет проверять динамические характеристики наиболее распространенных датчиков температуры - термопар и термометров сопротивления - там, где они установлены в операционном процессе. Метод LCSR показывает фактическое время отклика ТС (термометра сопротивления) «в процессе эксплуатации».

В отличие от термометров сопротивления и термопар, время отклика датчиков давления, уровня и расхода обычно не изменяется после установки. Это потому, что эти датчики являются электромеханическими устройствами, которые работают независимо от температуры окружающей среды и температуры процесса. Трудность в оценке датчиков давления связана с наличием системы процесс - провод - сенсорный интерфейс, которая соединяет датчик с фактическим процессом. Эти измерительные линии (провода) добавляют несколько миллисекунд задержки времени отклика датчиков. Хотя эта задержка незначительна, гидравлические задержки могут добавить десятки миллисекунд времени отклика для измерения давления системы.

Методика анализа шума позволяет измерять время отклика датчиков давления и измерительных линий в одном тесте. Как и в методе LCSR, техника анализа шума не мешает эксплуатации, использует существующие выходы датчиков для определения их времени отклика, и может быть выполнена удаленно для датчиков, которые установлены на производстве. Методика анализа шума основана на принципе контроля нормального выхода переменного тока датчиков давления с помощью быстрой системы сбора данных (частота от 1 кГц). Переменный ток на выходе датчика, который называется «шум», производится случайным колебаниями в процессе, связанными с турбулентностью, вибрацией и другими естественными явлениями. Так как эти посторонние шумы происходят на более высоких частотах, чем динамический отклик датчиков давления, они могут быть выделены из сигнала с помощью низкочастотной фильтрации. Как только сигнал переменного тока или шум отделяется от сигнала постоянного тока с использованием оборудования обработки сигнала, сигнал переменного тока усиливается, передается через сглаживающую фильтрацию, оцифровывается и хранится для последующего анализа. Этот анализ дает динамическое время реакции датчика давления и измерительных линий.

Существует ряд оборудования для сбора и анализа данных об уровне шума для датчиков давления. Коммерческое оборудование для спектрального анализа может собирать данные шумы и выполнять анализ в реальном времени, но это оборудование обычно не в состоянии справиться с множеством алгоритмов анализа данных, необходимых для получения результатов с точным временем отклика. Именно поэтому системы сбора данных на базе ПК, состоящие из изолированных узлов, усилителей и фильтров для формирования сигнала и его сглаживания, часто являются оптимальным выбором для сбора данных шумов и их анализа.

Срок службы датчиков

Когда следует заменять датчики? Ответ прост: заменять датчики следует по истечению срока службы, установленного производителем на указанный продукт, например 20 лет. Однако, это может быть очень дорого и нецелесообразно.

В качестве альтернативы можно продолжать использовать датчики после истечения их срока службы, но обязательно использовать системы отслеживания производительности датчика, чтобы определять надобность замены датчика и когда это следует сделать. Опыт показал, что высококачественные датчики с большой долей вероятности будут продолжать показывать хорошие результаты работы далеко за пределами диапазона службы, очерченного производителем. Консенсус между заводскими рекомендациями и реальным использованием датчиков может быть достигнут путем эксплуатации последних до тех пор, пока стабильность калибровки является приемлемой и его время отклика не уменьшается.

Многие шутят, что датчики, которые работают правильно надо «оставить в покое», а высококачественные датчики «в возрасте» вполне могут быть так же хороши, если не лучше, чем новые датчики той же модели и того же производителя.

Nbsp; ЛАБОРАТОРНАЯ РАБОТА №8 Измерение температуры с помощью термометров сопротивления и мостовых измерительных схем 1. Цель работы. 1.1. Ознакомление с принципом действия и техническим устройством термометров сопротивления. 1.2. Ознакомление с устройством и работой автоматических электронных мостов. 1.3. Изучение двух и трех проводной схемы подключения термометров сопротивления.

Общие сведения.

2.1. Устройство и работа термометров сопротивления.

Термометры сопротивления применяют для измерения температуры в пределах от -200 до +650 0 С.

Принцип действия металлических термометров сопротивления основан на свойстве проводников увеличивать электрическое сопротивление при нагревании. Теплочувствительный элемент термометра сопротивления представляет собой тонкую проволоку (медную или платиновую), спирально намотанную на каркас и заключенную в чехол.

Электрическое сопротивление проволоки при температуре 0 0 С строго определенное. Измеряя прибором сопротивление термометра сопротивления, можно точно определить его температуру. Чувствительность термометра сопротивления определяется температурным коэффициентом сопротивления материала, из которого сделан термометр, т.е. относительным изменением сопротивления теплочувствительного элемента термометра при нагревании его на 100 0 С. Так, например, сопротивление термометра, выполненного из платиновой проволоки, при изменении температуры на 1 0 С изменяется примерно на 36 процентов.

Термометры сопротивления, например, по сравнению манометрическими обладают рядом преимуществ: более высокой точностью измерения; возможностью передачи показаний на большие расстояния; возможностью централизации контроля путем присоединения нескольких термометров к одному измерительному прибору (через переключатель).

Недостаток термометров сопротивления - необходимость в постороннем источнике питания.

В качестве вторичных приборов в комплекте с термометром сопротивления применяются обычно автоматические электронные мосты. Для полупроводниковых термосопротивлений измерительными приборами обычно служат неуравновешенные мосты.

Для изготовления термометров сопротивления, как отмечалось выше, применяются чистые металлы (платина, медь) и полупроводники.

Платина наиболее полно отвечает основным требованиям, предъявляемым к материалу для термометров сопротивления. В окислительной среде она химически инертна даже при очень высоких температурах, но значительно хуже работает в восстановительной среде. В условиях восстановительной среды чувствительный элемент платинового термометра должен быть герметизирован.

Изменение сопротивления платины в пределах температур от 0 до +650 0 С описывается уравнением

R t =R o (1+at+bt 2),

где R t , R o -сопротивление термометра соответственно при 0 0 С и температуре t

a, b -постоянные коэффициенты, значения которых определяются при градуировке термометра по точкам кипения кислорода и воды.

К достоинствам меди, как материала для термометров сопротивления, следует отнести ее дешевизну, легкость получения в чистом виде, сравнительно высокий температурный коэффициент и линейную зависимость сопротивления от температуры:

R t =R o (1+at),

где R t , R o - сопротивление материала термометра, соответственно при 0 0 С и температуре t;

a - температурный коэффициент сопротивления (a =4,26*Е-3 1/град.)

К недостаткам медных термометров относится малое удельное сопротивление и легкая окисляемость при температуре выше 100 0 С. Полупроводниковые термосопротивления. Существенным преимуществом полупроводников является их большой температурный коэффициент сопротивления. Кроме того, вследствие малой проводимости полупроводников из них можно изготовить термометры малых размеров с большим начальным сопротивлением, что позволяет не учитывать сопротивление соединительных проводов и других элементов электрической схемы термометра. Отличительной особенностью полупроводниковых термометров сопротивления является отрицательный температурный коэффициент сопротивления. Поэтому при повышении температуры сопротивление полупроводников уменьшается.

Для изготовления полупроводниковых термосопротивлений применяют окислы титана, магния, железа, марганца, кобальта, никеля, меди и др. или кристаллы некоторых металлов (например германия) с различными примесями. Для измерения температуры наиболее часто применяют термосопротивления типов ММТ-1, ММТ-4, ММТ-5, КМТ-1 и КМТ-4. Для всех термосопротивлений типов ММТ и КМТ в рабочих интервалах температур сопротивление меняется от температуры по экспоненциальному закону.

Серийно выпускаются платиновые термометры сопротивления (ТСП) для температур от -200 до +180 0 С и медные термометры сопротивления (ТСМ) для температур от-60 до +180 0 С. В этих пределах температур существует несколько стандартных шкал.

Все серийно выпускаемые платиновые термометры сопротивления имеют условные обозначения: 50П, 100П, что соответствует при 0 0 С 50 ом и 100 ом. Медные термометры сопротивления имеют обозначения 50М и 100М.

Как правило, измерение сопротивления термометров сопротивления производится с помощью мостовых измерительных схем (уравновешанные и неуравновешенные мосты).

2.2. Устройство и работа автоматических электронных равновесных мостов.

Автоматические электронные мосты - это приборы, работающие с различными датчиками, в которых измеряемый технологический параметр (температура, давление и т.п.) может быть преобразован в изменение сопротивления. Наиболее широко автоматические электронные мосты применяются в качестве вторичных приборов при работе с термометрами сопротивления.

Принципиальная схема уравновешенного моста приведена на рис.1. На рис.1-а показана схема уравновешенного моста при двухпроводном включении измеряемого сопротивления Rt, являющегося вместе с соединительными проводами плечом моста. Плечи R1 и R2 имеют постоянное сопротивление, а плечо R3 является реохордом (переменным сопротивлением). В диагональ ab включен источник питания схемы, а в диагональ сd-нуль-прибор 2.

Рис.1. Принципиальная схема уравновешенного моста.

а) двухпроводная схема подключения

б) трехпроводная схема подключения.

Шкала моста располагается вдоль реохорда, сопротивление которого при изменении Rt изменяют путем перемещения движка 1 до тех пор, пока стрелка нуль прибора 2 не установится на нулевую отметку. В этот момент ток в измерительной диагонали отсутствует. Движок 1 связан с указателем шкалы.

При равновесии моста имеет место равенство

R1*R3=R2*(Rt+2*Rпр)

Rt=(R1/R2)*R3-2*Rпр

Отношение сопротивлений R1/R2, а также сопротивление соединительных проводов Rпр для данного моста величины постоянные. Поэтому каждому значению Rt соответствует определенное сопротивление реохорда R3, шкала которого градуируется либо в Омах, либо в единицах неэлектрической величины, для измерения которой предназначена схема, например, в градусах Цельсия.

При наличии длинных проводов, соединяющих датчик с мостом по двухпроводной схеме, изменение сопротивления и в зависимости от температуры окружающей среды (воздуха) может внести значительные погрешности в измерение сопротивления Rt. Радикальное средство устранения указанной погрешности - замена двухпроводной схемы трехпроводной (рис.1-б).

В схеме уравновешенного моста изменение напряжения источника питания не влияет на результаты измерения.

В автоматических уравновешенных электронных мостах для уравновешивания схемы используется следующая схема. Принципиальная схема электронного моста типа КСМ изображена на рис.2. В основу работы электронного моста положен принцип измерения сопротивления методом равновесного моста.

Мостовая схема состоит из трех плеч с сопротивлениями R1,R2,R3, реохорда R и четвертого плеча, содержащего измеряемое сопротивление Rt. К точкам с и d подключен источник питания.

При определении значения сопротивления протекающие по плечам моста токи создают в точках a и b напряжение, фиксируемое нуль-индикатором 1, подключенным к этим точкам. Перемещая движок 2 реохорда R с помощью реверсивного двигателя 4, можно найти такое положение равновесия схемы, при котором напряжения в точках a и b будут равны. Следовательно, по положению движка 2 реохорда можно найти величину измеряемого сопротивления Rt.

В момент равновесия измеряемой схемы положение стрелки 3 определяет значение измеряемой температуры (сопротивление Rt). Регистрация измеряемой температуры приводится с помощью пера-5 на диаграмме 6.

Электронные мосты подразделяют по числу точек измерения и записи на одноточечные и многоточечные (3-,6-,12- и 24 точечные), с ленточной диаграммой и приборы с дисковой диаграммой. Электронные мосты выпускаются с классами точности 0,5 и 0,25.

Записывающее устройство многоточечного прибора состоит из печатающего барабана с нанесенными на его поверхности точками и цифрами.

Приборы питаются от сети переменного тока напряжением 127 и 220В, а измерительная цепь моста питается постоянным током напряжением 6,3 В от силового трансформаторного прибора. Приборы с питанием от сухого элемента применяются в тех случаях, когда датчик устанавливается в пожароопасных помещениях.

Калибровка датчиков температуры

Термопреобразователь сопротивления подключают к измерительному прибору с помощью медных (иногда алюминиевых) проводов, сечение, протяженность, а следовательно, и сопротивление которых определяется конкретными условиями измерения.

В зависимости от способа присоединения термопреобразователя сопротивления к измерительному прибору - по двухпроводной или трехпроводной схеме (рис.1. ,вариант "а" и "б"), сопротивление проводов входит целиком в одно плечо мостовой схемы прибора, либо делится поровну между ее плечами. В обоих случаях показания прибора определяются не только сопротивлением термопреобразователя сопротивления, но и соединительных проводов. Степень влияния соединительных проводов на показания прибора зависит от величины их сопротивления. Так, в каждых конкретных условиях измерения, т.е. при каждом конкретном значении этого сопротивления, показания одного и того же прибора, измеряющего одну и ту же температуру (когда термопреобразователь имеет одно и то же сопротивление) будет различными. Для устранения такой неопределенности измерительные приборы градуируют при каком-либо определенном стандартном сопротивлении соединительных проводов, которое обязательно указывается на их шкале записью, например R вн =5Ом. Если при эксплуатации прибора соединительная линия будет иметь такое же сопротивление, показания прибора будут правильными. Поэтому измерениям должна предшествовать операция подгонки соединительной линии, заключающаяся в доведении ее сопротивления до указанного градуировочного значения R вн.

Сопротивление соединительной линии даже при тщательной подгонке равно градуировочному значению только в том случае, когда температура окружающего воздуха не отличается от той, при которой велась подгонка. Изменение температуры линии приведет к изменению сопротивления медных (алюминиевых) проводов, нарушению правильности подгонки и в конечном счете, к появлению температурной погрешности показаний прибора. Эта погрешность особенно сказывается при 2-х проводной линии связи, когда температурное приращение сопротивления линии имеет место только в одном плече мостовой схемы. При 3-х проводной линии температурное приращение сопротивления линии получают два смежных плеча и состояние мостовой схемы изменяется меньше, чем в первом случае. В результате этого, величина температурной погрешности оказывается меньшей. Поэтому 3-х проводная линия оказывается более предпочтительной, несмотря на больший расход материала, применяемого для изготовления соединительных проводов.

Порядок выполнения работы.

4.1. Ознакомиться с принципом действия и конструкцией термометров сопротивления и электротехническими устройствами стенда. Собрать двухпроводную схему измерения в соответствии с рис. 3а.

4.2. Установить тумблер в положение 2-проводная схема, а переключатель в положение 0.

4.3. Установить мостом МС, имитирующим термометр сопротивления, сопротивление в Омах, соответствующие табличным данным (Таблица 1), снять показания температуры в 0 С по шкале МПР51 и провести расчет абсолютной и относительной погрешности измерений, указанных в таблице 1 температур.

Исследование 2- проводной схемы.

4.4. Установить тумблер в положение 2-х проводная схема подключения.

4.5. Установить переключатель сопротивления соединительных проводов в положение 1 (соответствует R пр =1,72 Ом).

4.6. Выполнить пункт 4.3 и результаты измерения занести в таблицу 1 по строкам 5-7, соответствующим 2-х проводной схеме подключения при R пр =1,72 Ом.

4.7. Установить переключатель сопротивления соединительных проводов в положение 2 (соответствует R пр =5 Ом).

4.8. Выполнить пункт 4.3 и результаты измерения занести в таблицу 1 по строкам 8-10 соответствующим 2-х проводной схеме подключения при R пр =5 Ом.

Исследование 3 - х проводной схемы.

4.9. Установить тумблер в положение 3-х проводной схемы подключения (рис3 б).

4.10.Выполнить пункты 4.5-4.8 и занести результаты в строки 11-16 таблицы 1 соответствующие сопротивлениям соединительных проводов R пр =1,72 Ом и R пр =5 Ом.

4.11. Дать анализ точности измерений при двухпроводной и трехпроводной схеме измерения.

4.12. В отчете привести выводы по протоколу испытаний (таблица 1).

Контрольные вопросы.

1. Назовите типы термометров сопротивления и принцип их действия.

2. Назовите достоинства и недостатки термометров сопротивления.

3. Приведите примеры использования термометров сопротивления в системах автоматического контроля и регулирования.

4. Каково назначение автоматических электронных равновесных мостов?

5. Принцип действия уравновешенных мостов.

Датчики температуры часто устанавливаются на объекты таким образом, что их демонтаж практически невозможен или вызывает большие трудности. В то же время необходимо иметь уверенность в точности их показаний. Для таких случаев разрабатываются методики контроля работоспособности датчиков в процессе их эксплуатации без демонтажа. Кроме того от периодической поверки иногда приходится отказываться по причине дороговизны самой поверки по сравнению со стоимостью датчика. В публикациях по этой теме и в проспектах фирм-производителей описаны несколько подходов в решению проблемы надежности датчиков температуры.

1) Проводится статистический анализ дрейфа характеристик датчиков конкретного типа при рабочих температурах, и устанавливается срок их эксплуатации, в течение которого точность находится в пределах заданных допусков с большой вероятностью. После истечения этого срока все датчики подлежат обязательной замене.

2) На объект устанавливается избыточное количество датчиков. Результат определяется либо по среднему арифметическому из их показаний либо разрабатывается более сложная схема анализа, включающая сравнение дрейфов датчиков и выявление датчиков, показывающих дрейф выше среднего. Распространенной моделью являются датчики с двумя и тремя чувствительными элементами в одном корпусе.

3) На объект устанавливаются датчики разных типов (например, термометры сопротивления и термопары). Это позволяет избежать ошибок, связанных с одинаковым влиянием температурных режимов и условий на датчики одного типа. В США был запатентован само-поверяемый термометр, совмещающий в себе свойства чувствительного элемента сопротивления и термопары.

4) Иногда каналы для размещения датчиков конструируются так, что предусматривается возможность ввода рядом с рабочим датчиком образцового термометра во время поверки и вывода его по окончании поверки. Методы бездемонтажной поверки важны на опасных объектах, таких, например, как активная зона реактора. К сожалению, никаких стандартов по методикам бездемонтажной проверки и контроля работоспособности датчиков нет. Однако, проблема очень часто затрагивается на международных семинарах и конференциях.

Одним из решений проблемы поверки термопар во время эксплуатации без демонтажа с объекта, является метод использования термопар с дополнительным каналом, в который устанавливается на время поверки эталонная термопара. Такую конструкцию термопары и методику ее поверки запатентовало в 2007 г. ООО «ПК «ТЕСЕЙ» (патент на изобретение 2299408). В качестве эталонного средства измерения используется тонкая кабельная термопара типа ТНН (нихросил-нисил) 3 разряда.

Термопара ТНН вводится в дополнительный канал основной термопары только на непродолжительное время - время поверки, поэтому образование термоэлектрической неоднородности в термоэлектродах маловероятно. Подробнее об этом методе можно прочитать в разделе «Публикации» .

Аналогичные конструкции термометров и термопар для бездемонтажной поверки в условиях АЭС с дополнительными каналами для эталонных датчиков производятся в ЗАО НПК «Эталон» (г. Волгодонск).

Следующий материал раздела мы нашли на конференции ТЕМПМЕКО 2010. Там был представлен интересный доклад от немецкой фирмы Electrotherm о термопарах со встроенной реперной точкой плавления металла, позволяющей делать точную периодическую поверку термопар. С разрешения фирмы публикуем краткую информацию об устройстве термопары. (Российские компании, изготавливающие аналогичные установки приглашаем прислать свой материал для публикации на сайте)

Термопара со встроенной реперной точкой

Термопара со встроенной реперной точкой (разработана и выпускается фирмой Electrotherm, Германия) сайт фирмы www.electrotherm.de

Главным элементом данной измерительной системы является термопара со встроенной ячейкой реперной точки и миниатюрным нагревательным элементом. Ячейка реперной точки содержит вещество высокой чистоты (чистый металл или эвтектический сплав). Когда температура среды медленно повышается до значения, превышающего температуру плавления металла, на кривой, отслеживающей сигнал термопары, наблюдается воспроизводимая «площадка» с постоянной ТЭДС, так называемая «площадка плавления». Во время этой площадки происходит фазовый переход, т.е. тепло, поступающее извне, идет на разрушение кристаллической решетки металла, рост температуры останавливается. Регистрируемое значение ТЭДС может использоваться для градуировки термопары при известной температуре фазового перехода. При снижении температуры можно наблюдать «площадку затвердевания».

Нагрев термопары для калибровки может быть также осуществлен без разогрева объекта, с помощью миниатюрного встроенного нагревателя.

В таблице приведены данные о реперных точках для градуировки термопар.

Каждая термопара со встроенной реперной точкой снабжена трансмиттером, сигнал с которого поступает на компьютер и обрабатывается с помощью специального программного обеспечения. Компьютер управляет всем циклом нагрева, калибровки и анализа данных. Он может соединяться сразу с 8 измерительными модулями и также связываться посредством сетевых карт с центральным управляющим компьютером.

Для определенных целей регулирования, напри­мер для регулирования нагревательной установки, бы­вает важно измерять разность температур. Это изме­рение может быть осуществлено, в частности, по раз­ности между наружной и внутренней температурой или температурой на входе и выходе.

Рис. 7.37. Измерительный мост для определения абсолютных значений температуры и разности температур в 2-х точках; U Br – напряжение моста.

Принципиальное устройство измерительной схемы показано на рис. 7.37. Схема состоит из двух мостов Уитстона, причем используется средняя ветвь (R3 – R4) обоих мостов. Напряжение между точками 1 и 2 ука­зывает разность температур между Датчиками 1 и 2, тогда как напряжение между точками 2 и 3 соот­ветствует температуре Датчика 2, а между точками 3 и 1 - температуре Датчика 1.

Одновременное измерение температуры Т 1 или Т 2 и разности температур Т 1 – Т 2 важно при определе­нии термического КПД тепловой машины (процесс Карно). Как известно, коэффициент полезного дей­ствия W получается из уравнения W = (Т 1 – Т 2)/Т 1 = ∆Т)/Т 1 .

Таким образом, для определения нужно только найти отношение двух напряжений ∆U D 2 и ∆U D 1 между точками 1 и 2 и между точками 2 и 3.

Для точной настройки описанных приборов, пред­назначенных для измерения температуры, нужны до­вольно дорогие калибровочные устройства. Для об­ласти температур 0...100°С в распоряжении пользо­вателя имеются вполне доступные опорные темпера­туры, так как 0°С или 100°С по определению яв­ляются соответственно точками кристаллизации пли кипения чистой воды.

Калибровка по 0°С (273,15°К) осуществляется в воде с тающим льдом. Для этого изолированный со­суд (например, термос) заполняют сильно измельчен­ными кусками льда и заливают водой. Через несколь­ко минут в этой ванне устанавливается температура, точно равная 0°С. Погрузив датчик температуры в эту ванну, получают показания датчика, соответствующие 0°С.

Аналогично действуют и при калибровке по 100°С (373,15 К). Металлический сосуд (например, кастрюлю) наполовину заполняют водой. Сосуд, разу­меется, не должен иметь никаких отложений (на­кипи) на внутренних стенках. Нагревая сосуд на плитке, доводят воду до кипения и тем самым дости­гают 100-градусной отметки, которая служит второй калибровочной точкой для электронного термометра.

Для проверки линейности калиброванного таким образом датчика необходима, по меньшей мере, еще одна контрольная точка, которая должна быть рас­положена как можно ближе к середине измеряемого диапазона (около 50°С).

Для этого нагретую воду снова охлаждают до ука­занной области и ее температуру точно определяют с помощью калиброванного ртутного термометра, имею­щего точность отсчета 0,1°С. В области температур около 40°С для этой цели удобно применять меди­цинский градусник. Путем точного измерения темпе­ратуры воды и выходного напряжения получают третью опорную точку, которая может рассматри­ваться как мера линейности датчика.

Два различных датчика, откалиброванные выше­описанным методом, дают совпадающие показания в точках Р 1 и Р 2 , несмотря на их различные характе­ристики (рис. 7.38). По дополнительное измерение, например температуры тела, выявляет нелинейность характеристики В датчика 2 в точке Р 1 . Линейная характеристика А датчика 1 в точке Р 3 соответствует точно 36,5% полного напряжения в измеряемом диа­пазоне, тогда как нелинейная характеристика В со­ответствует явно меньшему напряжению.

Рис. 7.38. Определение линейности характеристики датчика с диапазоне 0...100ºС. Линейная (А ) и нелинейная (В ) характери­стики датчиков совпадают в опорных точках 0 и 100ºС.

=======================================================================================

    Датчики температуры из платины и никеля

    Термопары

    Кремниевые датчики температуры

    Интегральные датчики температуры

    Температурный контроллер

    Терморезисторы с отрицательным ТКС

    Терморезисторы с положительным ТКС

    Датчик уровня на основе терморезистора с положительным ТКС

    Измерение разности температур и калибровка датчиков

ДАТЧИКИ ДАВЛЕНИЯ, РАСХОДА И СКОРОСТИ

Как и датчики температуры, датчики давления отно­сятся к наиболее широкоупотребительным в технике. Однако для непрофессионалов измерение давления представляет меньший интерес, так как существую­щие датчики давления относительно дороги и имеют лишь ограниченное применение. Несмотря на это, рас­смотрим некоторые варианты их использования.

Согласовано Утверждаю

Руководитель ГЦИ СИ Директор

Зам. Директора ФГУ ВЦСМ

__________ __________

Методика калибровки

датчиков температуры серии КДТ.

Разработал

Гл. технолог ООО«КОНТЭЛ»

Методика калибровки датчиков температуры

КДТ-50, КДТ-200 и КДТ-500.

1. Перед началом калибровки проверить соответствие расположенных на плате компонентов по сборочному чертежу: КДТ50.02.01СБ – для датчиков КДТ-50; КДТ200.02.01СБ – для датчиков КДТ-200; КДТ500.02.01СБ – для датчиков КДТ-500.

2.Калибровка электронного блока датчиков КДТ-50 и КДТ-200.

2.1.Подключить к плате источник питания и эквивалент термометра – сопротивления ТСМ-100 согласно рис.1.

DIV_ADBLOCK62">


2.3.Последовательность операций регулировки.

2.3.1.Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

2.3.2.Установить на эквиваленте ТСМ нижнее значение измеряемой температуры: для КДТ-50–«-500С», для КДТ-200 - «00С».

2.3.3.Подать напряжение питания.

2.3.4.Вращением подстроечного резистора RP1 установить значение выходного тока 4 mA (показания вольтметра 0,400).

2.3.5.Установить на эквиваленте ТСМ верхнее значение измеряемой температуры: для КДТ-50–«+500С», для КДТ-200 - «+2000С».

2.3.6.Вращением подстроечного резистора RP2 установить значение выходного тока 20 mA (показания вольтметра 20,00).

2.3.7.Повторять операции п. п.2.3.4 и 2.3.6 до установления выходного тока соответствующего диапазону

измеряемой температуры в пределах погрешности, не превышающей 0,25% .

2.3.8.Проверить линейность по промежуточным точкам.

2.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 1.

3.Калибровка датчиков температуры КДТ-500.

3.1.Подключить к плате источник питания и эквивалент термометра – сопротивления Pt-100 согласно рис.2.

Полярность подключения источника питания значения не имеет.

-Эквивиалент Pt 100 - специальный магазин сопротивлений, имитирующий термометр-сопротивление типа Pt-100;

-V - Цифровой вольтметр типа В7-40;

-R н – катушка электрического сопротивления Р331;

-ИП – источник постоянного тока стабилизированный типа Б5-45.

3.2.Последовательность операций калибровки.

Ввиду отсутствия в изделии регулировочных элементов операция калибровки сводится к проверке работоспособности и линейности преобразования сопротивления в ток.

3.2.1. Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

3.2.2. Установить на эквиваленте Pt-100 нижнее значение измеряемой температуры: «00С».

3.2.3. Подать напряжение питания.

3.2.4.Показания вольтметра должны соответствовать 4 mA +/-0,25% (показания вольтметра 0,400).

3.3.5.Установить на эквиваленте Pt-100 верхнее значение измеряемой температуры: «+5000С».

3.3.6. Показания вольтметра должны соответствовать 20mA +/-0,25% (показания вольтметра 20,00).

3.3.7.Проверить линейность по промежуточным точкам.

3.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 2.

Примечание. Схема датчика температуры КДТ-500 рассчитана на работу совместно с Pt-100 с W100=1.3910. Применение термометра-сопротивления с W100=1.3850 приводит к увеличению основной погрешности до 0,8% в середине диапазона.

4.После регулировки платы датчиков покрываются лаком. Рекомендуемое время сушки – 2 суток.

После сушки платы подлежат обязательной перепроверке с целью коррекции выходного тока. Во время этой операции достаточно проверить датчик на краях диапазона.

Исполнитель________

Приложение 1

Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-50.


Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-200.

При отсутствии эквивалента ТСМ-100 следует применить магазин сопротивлений МСР-63 или аналогичный.

Приложение 2

Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-500.

(для W100=1.3850)

При отсутствии эквивалента Pt-100 следует применить магазин сопротивлений МСР-63 или аналогичный.



В продолжение темы:
Беседки и навесы своими руками

Видеть во сне свою квартиру предвещает денежные поступления. Менять свою квартиру на другую означает измену в любви. Чужая квартира говорит о том, что человек, с которым вы...

Новые статьи
/
Популярные