Поперечный изгиб балки примеры решения. Прямой изгиб плоский поперечный изгиб

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Поперечный изгиб получается, когда сила действует на брус по направлению, поперечному к его длине.

Рассмотрим два варианта поперечного изгиба: первый, балка лежит на двух опорах, причем груз расположен на балке в пределах между опорами и второй, балка прочно заделана одним концом в стену, а груз находится на свободном конце балки.

Прежде всего выясним, какое влияние на изгиб оказывает место приложения силы. Если мы положим доску на две опоры и будем по ней двигаться от опоры к середине, то прогиб доски будет непрерывно возрастать по мере нашего приближения к середине. Из этого опыта можно сделать заключение, что чем ближе к середине будет приложена сила, тем больше будет прогиб балки. То же самое явление мы будем наблюдать при опыте с балкой, заделанной одним концом в стену, при перемещении груза от стены к концу балки.

В зданиях и сооружениях на балку могут действовать одновременно несколько сил, и притом они могут перемещаться, как, например, автомобили на мосту. Определить влияние этих сил на балку не так просто, как это мы делаем при растяжении или сжатии. Зависимость получается не простая, и человеку без высшего технического образования заниматься этим вопросом сложно.

Как уже было сказано, сила может быть приложена в любом месте балки. Такая сила, имеющая одну точку приложения, называется сосредоточенной .

Если сила равномерно распределена по всей длине балки, то такая сила называется равномерно-распределенной .

Например, на балке в одном месте находится мешок с песком весом 100 кг, это будет сосредоточенная нагрузка (сила), а если тот же груз равномерно рассыпать по всей длине балки, то это будет равномерно-распределенная нагрузка. И в том и в другом случае величина силы одинакова 100 кг, но способ распределения различен. В зависимости от этого и напряжение в балке будет различное, а именно, при сосредоточенной по середине балки нагрузке напряжение будет в 2 раза больше, чем при нагрузке, равномерно-распределенной.

Нам уже известно, что, чем больше сосредоточенный груз будет приближаться к опоре, тем меньше будет прогиб балки, и тем меньше напряжение в материале. Следовательно, если балка будет иметь достаточную прочность при расположении какого-либо груза по середине, то она, безусловно, выдержит этот груз, если он будет находиться в каком угодно месте балки.

Далее, очень интересно выяснить, какие получаются напряжения в нагруженной балке, и как они распределены. Произведем такой опыт: возьмем брус и сделаем на нем пропил в верхней стороне, а затем его нагрузим. Мы увидим, что обе стороны пропила сблизятся вплотную друг к другу. Из этого опыта мы заключаем, что в верхней части бруса, под влиянием нагрузки, происходит сжатие.

Если мы теперь сделаем пропил в нижней стороне бруса и опять его нагрузим, то увидим, что края пропила разошлись и пропил в нижней части сделался очень широким. Из этого мы заключаем, что в нижней части бруса, под влиянием нагрузки, происходит растяжение. Итак, следовательно, в верхней части бруса или балки под влиянием нагрузки происходит сжатие, а в нижней - растяжение. Но так как это происходит в одной и той же балке одновременно, то очевидно, что где-то есть место, в котором растяжение переходит в сжатие, и наоборот. Такое место, действительно, имеется в каждой балке. Эту линию, или вернее плоскость раздела сжатия от растяжения, называют нейтральной осью. В деревянной балке прямоугольного сечения она находится приблизительно посредине высоты.

Так как мы теперь знаем распределение усилий в брусе, находящемся под грузом, то нам будет вполне понятно, как иногда выпрямляют сильно погнувшуюся балку. Для этого ее подпирают и в верхней части балки делают пропил с забиванием в него клина с одновременным поддомкрачиванием снизу. Так как в целой балке, находящейся под грузом, сила растяжения в нижней части равна силе сжатия в верхней, то при забивке клиньев, очевидно, сила сжатия в верхней части балки увеличится, и балка искривится в обратную сторону, т. е. выпрямится.

Далее, не трудно убедиться, что при изгибе балки в ней появляются скалывающие усилия. Для этого опыта возьмем два одинаковой длины бруса и положим один брус на другой. В ненагруженном состоянии торцы их будут совпадать, как показано на рис. 4а. Если теперь мы их нагрузим, то произойдет прогиб брусьев, и торцы их будут расположены так, как показано на рис. 4б. Мы видим, что торцы брусьев не совпадают и нижняя кромка торца верхнего бруса выступает за линию верхней кромки торца нижнего бруса. Очевидно, что по плоскости соприкосновения брусьев произошел сдвиг, в результате которого и появилось выдвижение концов одного бруса над другим. Если бы брус был из одного куска дерева, то очевидно, что никаких изменений на концах бруса мы не заметили бы, но несомненно, что в этом брусе в нейтральной плоскости были бы скалывающие усилия, и если бы прочность дерева была недостаточна, то по концам бруса обнаружилось бы расслоение.

Рис. 4. Изгиб составной балки

После этого опыта становится вполне понятным устройство составных балок на шпонках. На рис. 5 показана такая балка, состоящая из трех брусков, между которыми врублены шпонки. Очевидно, что конец одной балки не может сдвинуться относительно другой, так как этому перемещению препятствуют шпонки. Чем прочнее связь между шпонками и балками, тем жестче балка.

Продолжим предыдущий опыт. Если мы через оба бруса проведем на равном расстоянии черты карандашом, как показано на рис. 4а, и затем нагрузим брусья, то увидим, что средняя черта на обоих брусьях останется без изменения, а все остальные сместятся, как показано на рис. 4б. При этом расхождение черточек будет тем больше, чем дальше они отстоят от середины. Из этого опыта мы заключаем, что наибольшая скалывающая сила находится у концов балок. Вот почему в балках на шпонках следует шпонки ставить чаще к концам и реже к середине.


Рис. 5. Составная балка с врубленными шпонками

Итак, все проделанные опыты убеждают нас в том, что в нагруженной балке возникают различные напряжения.

Будем опять учиться на опыте. Все знают, что если положить доску плашмя и нагрузить ее, то она заметно прогнется, а если ту же доску поставить на ребро и нагрузить ее той же нагрузкой, то прогиб почти не будет заметен. Этот опыт убеждает нас в том, что величина изгиба зависит, главным образом, от высоты балки, а не от ширины. Если взять два квадратных бруса и сплотить их шпонками и болтами, так чтобы получилась одна балка высотою в два квадрата, то такая балка сможет выдержать груз в два раза больше, чем обе эти балки, положенные рядом. При трех балках груз может быть в 4,5 раза больше и т. д.

Из этих опытов нам ясно, что гораздо выгоднее увеличивать высоту балки, чем ее ширину, но, конечно, до известного предела, так как при очень высокой и тонкой балке она сможет изогнуться в сторону.

Так как балки вытесываются или выпиливаются из бревен, то является вопрос, какое же отношение должно быть между высотой и шириной балки, чтобы получить балку наибольшей прочности. Строительная механика дает точный ответ на этот вопрос, а именно, в высоте должно быть 7 каких-либо мер, а в ширине таких же точно мер только 5. Практически это делается, следующим образом. На торце круглого бревна (рис.6) проводят, через центр линию и делят ее на три равные части. Затем из этих точек по наугольнику проводят в противоположные стороны линии до края торца. Наконец, эти крайние точки соединяют с концами линии, проведенной через центр торца, и у нас получится прямоугольник, у которого длинная сторона будет иметь 7 мер, а короткая таких же 5. По этим линиям производится опиловка или обтеска бревна и получается самая прочная балка прямоугольного сечения, какую только можно сделать из данного бревна.


Рис. 6. Балка наибольшей прочности, которую можно вырубить из бревна

Интересно отметить, что, круглое бревно менее прочно в отношении изгиба, чем тоже бревно со слегка стесанными горбылями с верхней и нижней стороны.

На основании всего вышеизложенного можно сделать заключение, что точное определение размеров балок зависит от многих обстоятельств: от числа и местоположения грузов, от рода нагрузки, от способа ее распределения (сплошная или сосредоточенная), от формы балки, ее длины и т. д. Учет всех этих обстоятельств довольно сложен и плотнику-практику он недоступен.

При определении размеров балок, необходимо, кроме прочности, иметь в виду также и прогиб балок. Иногда на постройке плотники высказывают недоумение, почему ставится такая толстая балка, можно было бы взять и потоньше. Совершенно верно, и более тонкая балка выдержит тот груз, который на ней будет расположен, но когда впоследствии по полу на тонких балках будут ходить или танцевать, то такой пол будет гнуться, как качели. Для избегания очень неприятной зыбкости пола, балки кладут толще, чем это требуется по условиям прочности. В жилых домах прогиб балок допускается не свыше 1/250 пролета. Если, например, пролет 9 м, то есть 900 см, то наибольший прогиб должен быть не больше 900: 250, что составит З,6 см.

В заключение следует упомянуть об одном практическом правиле для определения высоты балок в жилых зданиях, а именно: высота балки должна быть не менее 1/24 длины балки. Например, если длина балки 8 м (800 см), то высота должна быть 800: 24 = 33 см.

Для практических целей, помимо всего вышеизложенного, следует ознакомиться с прилагаемыми таблицами, которые дадут возможность, без всяких затруднений легко и быстро определять нужный размер балки для случая равномерно-распределенной нагрузки. В этих таблицах указаны допускаемые нагрузки на балки прямоугольного и круглого сечения, для различных размеров балок и для разных пролетов.

Пример1. В помещении с пролетом 8 м имеется нагрузка весом 2,5 т (2500 кг). Нужно подобрать балки для этой нагрузки.В таблице прямоугольных балок рассматриваем столбец с пролетом 8 м. Нагрузку в 2500 кг может выдержать балка сечением 31×22 см или две балки 26×18,5, или три балки 24,5×17,5 см и т.д. Балки нужно распределить с соответствующим шагом учитывая, что крайние балки несут половину нагрузки от балок, расположенных посредине.

Для груза, расположенного сосредоточенно по середине пролета, величина его должна быть в два раза меньше, чем указано в таблице.

Пример 2. Для прямоугольной балки 7 к 5 из 32-сантиметрового бревна при пролете в 6 м можно допустить равномерно-распределенную нагрузку в 2632 кг (см. таблицу). Если груз будет сосредоточен посредине балки, то можно допустить нагрузку лишь вдвое меньшую, а именно 2632: 2 = 1316 кг.Пример 3. Какого размера балка из бревна, отесанного или опиленного на два канта, выдержит сосредоточенную посредине нагрузку в 1,6 тонны (1600 кг), при пролете в 8 м?

В задании дана сосредоточенная сила, мы знаем, что эта балка должна выдерживать в два раза большую равномерно-распределенную нагрузку, то есть 1600×2=3200 кг. Смотрим в таблице для лафета столбец для пролета в 8 м. Ближайшая к 3200 цифра в таблице 3411 каковой цифре соответствует бревно диаметром в 34 см.

Если балка заделана прочно одним концом в стену, то она может выдержать груз, сосредоточенный на ее свободном конце, в 8 раз меньший, чем та же балка, лежащая на двух опорах и несущая равномерно-распределенную нагрузку.

Пример 4. Какого диаметра бревно, отесанное или опиленное на четыре канта, прочно заделанное одним концом в стену и имеющее свободный конец в 3 м, может выдержать сосредоточенный груз в 800 кг, прикрепленный к ее свободному концу?Если бы эта балка лежала, на двух опорах, то она могла бы выдержать груз в 8 раз больший, то есть 800 × 8 = 6400 кг. Смотрим в таблице для обзольного бруса столбец для пролета в 3 м и находим две ближайшие цифры 5644 кг и 6948 кг. Этим цифрам соответствуют бревна в 30 и 32 см. Можно взять бревно в 31 см.

Если на балке, заделанной одним концом в стену, нагрузка распределена равномерно, то такая балка может выдержать нагрузку в 4 раза меньшую, чем та же балка, лежащая на двух опорах.

Пример 5. Какой груз может выдержать балка прямоугольного сечения, заделанная одним концом в стену, со свободным концом длиною в 4 м, нагруженная равномерно-распределенной нагрузкой общим весом в 600 кг?Если бы эта балка лежала на двух опорах, то она могла бы выдержать груз в 4 раза больший, то есть 600×4=2400 кг. Смотрим в таблице для балки 7 к 5 столбец для пролета в 4 м. Ближайшая цифра 2746, каковой цифре соответствует бревно в 28 см, или брус в 23×16 см.

При расчетах балок может встретиться такой вопрос какое давление испытывают опоры (стены или колонны) от лежащей на них балки с грузом?

Если груз распределен равномерно по всей балке или сосредоточен посредине, то обе опоры несут одинаковую нагрузку.

Если груз расположен ближе к одной опоре, то эта опора несет больший груз, чем другая. Чтобы узнать какой именно, - нужно величину груза умножить на расстояние до другой опоры и разделить на пролет.

Пример 6. На балке, длиною в 4 м, расположен груз в 100 кг, в расстоянии 1 м от левой опоры и, следовательно, в расстоянии 3 м от правой. Требуется найти нагрузку на левую опору.Умножаем 100 на 3 и полученное число делим на 4, получим 75. Следовательно, левая опора испытывает давление в 75, а правая оставшуюся часть нагрузки, то есть 100-75=25 кг.

Если на балке находятся несколько грузов, то расчет нужно сделать для каждого груза отдельно, и затем полученные нагрузки на одну опору сложить.

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскоcтями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом Mo; во втором – сосредоточенной силой F.

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент Мz и поперечная сила Qy (или при изгибе относительно другой главной оси – изгибающий момент Мy и поперечная сила Qz).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Qy считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;



2) изгибающий момент Мz считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M, знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M≡Mz, Q≡Qy.

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль

оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q+dQ, а также изгибающие моменты M и M+dM. Из условия равновесия выделенного элемента получим

Первое из двух записанных уравнений дает условие

Из второго уравнения, пренебрегая слагаемым q·dx·(dx/2) как бесконечно малой величиной второго порядка, найдем

Рассматривая выражения (10.1) и (10.2) совместно можем получить

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил: а – на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми; б – на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами.

При этом, если эпюру М строим «на растянутом волокне», то выпуклость параболы будет направлена по направлению действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию; в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпюре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q>0, момент М возрастает, а на участках, где Q<0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая.

Отметим, что в теории упругости можно получить точную зависи-мость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли) – сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряжений – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – соседние продольные волокна не давят друг на друга.

Статическая сторона задачи

Чтобы определить напряжения в поперечных сечениях балки, рассмотрим, прежде всего, статическую сторон у задачи. Применяя метод мысленных сечений и составляя уравнения равновесия для отсеченной части балки, найдем внутренние усилия при изгибе. Как было показано ранее, единственным внутренним усилием, действующим в сечении бруса при чистом изгибе, является внутренний изгибающий момент, а значит здесь возникнут связанные с ним нормальные напряжения.

Связь между внутренними усилиями и нормальными напряжениями в сечении балки найдем из рассмотрения напряжений на элементарной площадке dA, выделенной в поперечном сечении A балки в точке с координатами y и z (ось y для удобства анализа направлена вниз):

Как видим, задача является внутренне статически неопределимой, так как неизвестен характер распределения нормальных напряжений по сечению. Для решения задачи рассмотрим геометрическую картину деформаций.

Геометрическая сторона задачи

Рассмотрим деформацию элемента балки длиной dx, выделенного из изгибаемого стержня в произвольной точке с координатой x. Учитывая принятую ранее гипотезу плоских сечений, после изгиба сечения балки повернуться относительно нейтральной оси (н.о.) на угол dϕ, при этом волокно ab, отстоящее от нейтральной оси на расстояние y, превратится в дугу окружности a1b1, а его длина изменится на некоторую величину. Здесь напомним, что длина волокон, лежащих на нейтральной оси, не изменяется, а потому дуга a0b0 (радиус кривизны которой обозначим ρ) имеет ту же длину, что и отрезок a0b0 до деформации a0b0=dx.

Найдем относительную линейную деформацию εx волокна ab изогнутой балки.

При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Прямой изгиб. Плоский поперечный изгиб Построение эпюр внутренних силовых факторов для балок Построение эпюр Q и М по уравнениям Построение эпюр Q и М по характерным сечениям (точкам) Расчёты на прочность при прямом изгибе балок Главные напряжения при изгибе. Полная проверка прочности балок Понятие о центре изгиба Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жёсткости Дифференциальное уравнение изогнутой оси балки Метод непосредственного интегрирования Примеры определения перемещений в балках методом непосредственного интегрирования Физический смысл постоянных интегрирования Метод начальных параметров (универсальное уравнение изогнутой оси балки). Примеры определения перемещений в балке по методу начальных параметров Определение перемещений по методу Мора. Правило А.К. Верещагина. Вычисление интеграла Мора по правилу А.К. Верещагина Примеры определения перемещений посредством интеграла Мора Библиографический список Прямой изгиб. Плоский поперечный изгиб. 1.1. Построение эпюр внутренних силовых факторов для балок Прямым изгибом называется такой вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила. В частном случае, поперечная сила может быть равна нулю, тогда изгиб называется чистым. При плоском поперечном изгибе все силы расположены в одной из главных плоскостей инерции стержня и перпендикулярны его продольной оси, в той же плоскости расположены моменты (рис. 1.1, а,б). Рис. 1.1 Поперечная сила в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Поперечная сила в сечении m-n балки (рис. 1.2, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена вверх, а справа – вниз, и отрицательной – в противоположном случае (рис. 1.2, б). Рис. 1.2 Вычисляя поперечную силу в данном сечении, внешние силы, лежащие слева от сечения, берут со знаком плюс, если они направлены вверх, и со знаком минус, если вниз. Для правой части балки – наоборот. 5 Изгибающий момент в произвольном поперечном сечении балки численно равен алгебраической сумме моментов относительно центральной оси z сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Изгибающий момент в сечении m-n балки (рис. 1.3, а) считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по стрелке часов, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 1.3, б). Рис. 1.3 При вычислении изгибающего момента в данном сечении моменты внешних сил, лежащие слева от сечения, считаются положительными, если они направлены по ходу часовой стрелки. Для правой части балки – наоборот. Удобно определять знак изгибающего момента по характеру деформации балки. Изгибающий момент считается положительным, если в рассматриваемом сечении отсечённая часть балки изгибается выпуклостью вниз, т. е. растягиваются нижние волокна. В противоположном случае изгибающий момент в сечении отрицательный. Между изгибающим моментом М, поперечной силой Q и интенсивностью нагрузки q существуют дифференциальные зависимости. 1. Первая производная от поперечной силы по абсциссе сечения равна интенсивности распределенной нагрузки, т.е. . (1.1) 2. Первая производная от изгибающего момента по абсциссе сечения равна поперечной силе, т. е. . (1.2) 3. Вторая производная по абсциссе сечения равна интенсивности распределённой нагрузки, т. е. . (1.3) Распределенную нагрузку, направленную вверх, считаем положительной. Из дифференциальных зависимостей между М, Q, q вытекает ряд важных выводов: 1. Если на участке балки: а) поперечная сила положительна, то изгибающий момент возрастает; б) поперечная сила отрицательна, то изгибающий момент убывает; в) поперечная сила равна нулю, то изгибающий момент имеет постоянное значение (чистый изгиб); 6 г) поперечная сила проходит через нуль, меняя знак с плюса на минус, max M M, в противоположном случае M Mmin. 2. Если на участке балки распределенная нагрузка отсутствует, то поперечная сила постоянна, а изгибающий момент изменяется по линейному закону. 3. Если на участке балки имеется равномерно распределенная нагрузка, то поперечная сила изменяется по линейному закону, а изгибающий момент – по закону квадратной параболы, обращенной выпуклостью в сторону действия нагрузки (в случае построения эпюры М со стороны растянутых волокон). 4. В сечении под сосредоточенной силой эпюра Q имеет скачок (на величину силы), эпюра М - излом в сторону действия силы. 5. В сечении, где приложен сосредоточенный момент, эпюра М имеет скачок, равный значению этого момента. На эпюре Q это не отражается. При сложном нагружении балки строят эпюры поперечных сил Q и изгибающих моментов М. Эпюрой Q(M) называется график, показывающий закон изменения поперечной силы (изгибающего момента) по длине балки. На основе анализа эпюр М и Q устанавливают опасные сечения балки. Положительные ординаты эпюры Q откладываются вверх, а отрицательные – вниз от базисной линии, проводимой параллельно продольной оси балки. Положительные ординаты эпюры М откладываются вниз, а отрицательные – вверх, т. е. эпюра М строится со стороны растянутых волокон. Построение эпюр Q и М для балок следует начинать с определения опорных реакций. Для балки с одним защемленным и другим свободным концами построение эпюр Q и М можно начинать от свободного конца, не определяя реакций в заделке. 1.2. Построение эпюр Q и М по уравнениям Балка разбивается на участки, в пределах которых функции для изгибающего момента и поперечной силы остаются постоянными (не имеют разрывов). Границами участков служат точки приложения сосредоточенных сил, пар сил и места изменения интенсивности распределенной нагрузки. На каждом участке берется произвольное сечение на расстоянии х от начала координат, и для этого сечения составляются уравнения для Q и М. По этим уравнениям строятся эпюры Q и M. Пример 1.1 Построить эпюры поперечных сил Q и изгибающих моментов М для заданной балки (рис. 1.4,а). Решение: 1. Определение реакций опор. Составляем уравнения равновесия: из которых получаем Реакции опор определены правильно. Балка имеет четыре участка Рис. 1.4 нагружения: СА, AD, DB, BE. 2. Построение эпюры Q. Участок СА. На участке СА 1проводим произвольное сечение 1-1 на расстоянии x1 от левого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих слева от сечения 1-1: Знак минус взят потому, что сила, действующая слева от сечения, направлена вниз. Выражение для Q не зависит от переменной x1. Эпюра Q на этом участке изобразится прямой, параллельной оси абсцисс. Участок AD. На участке проводим произвольное сечение 2-2 на расстоянии x2 от левого конца балки. Определяем Q2 как алгебраическую сумму всех внешних сил, действующих слева от сечения 2-2: 8 Величина Q постоянна на участке (не зависит от переменной x2). Эпюра Q на участке представляет собой прямую, параллельную оси абсцисс. Участок DB. На участке проводим произвольное сечение 3-3 на расстоянии x3 от правого конца балки. Определяем Q3 как алгебраическую сумму всех внешних сил, действующих справа от сечения 3-3: Полученное выражение есть уравнение наклонной прямой линии. Участок BE. На участке проводим сечение 4-4 на расстоянии x4 от правого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих справа от сечения 4-4: 4 Здесь знак плюс взят потому, что равнодействующая нагрузка справа от сечения 4-4 направлена вниз. По полученным значениям строим эпюры Q (рис. 1.4, б). 3. Построение эпюры М. Участок м1. Определяем изгибающий момент в сечении 1-1 как алгебраическую сумму моментов сил, действующих слева от сечения 1-1. – уравнение прямой. Участок A 3Определяем изгибающий момент в сечении 2-2 как алгебраическую сумму моментов сил, действующих слева от сечения 2-2. – уравнение прямой. Участок DB 4Определяем изгибающий момент в сечении 3-3 как алгебраическую сумму моментов сил, действующих справа от сечения 3-3. – уравнение квадратной параболы. 9 Находим три значения на концах участка и в точке с координатой xk , где Участок BE 1Определяем изгибающий момент в сечении 4-4 как алгебраическую сумму моментов сил, действующих справа от сечения 4-4. – уравнение квадратной параболы находим три значения M4: По полученным значениям строим эпюру М (рис. 1.4, в). На участках CA и AD эпюра Q ограничена прямыми, параллельными оси абсцисс, а на участках DB и BE – наклонными прямыми. В сечениях C, A и B на эпюре Q имеют место скачки на величину соответствующих сил, что служит проверкой правильности построения эпюры Q. На участках, где Q  0, моменты возрастают слева направо. На участках, гдеQ  0, моменты убывают. Под сосредоточенными силами имеются изломы в сторону действия сил. Под сосредоточенным моментом имеет место скачок на величину момента. Это указывает на правильность построения эпюры М. Пример 1.2 Построить эпюры Q и М для балки на двух опорах, нагруженной распределенной нагрузкой, интенсивность которой меняется по линейному закону (рис. 1.5, а). Решение Определение реакций опор. Равнодействующая распределенной нагрузки равна площади треугольника, представляющего собой эпюру нагрузки и приложена в центре тяжести этого треугольника. Составляем суммы моментов всех сил относительно точек А и В: Построение эпюры Q. Проведем произвольное сечение на расстоянии x от левой опоры. Ордината эпюры нагрузки, соответствующая сечению, определяется из подобия треугольников Равнодействующая той части нагрузки, которая распложена слева от сечения Поперечная сила в сечении равна Поперечная сила изменяется по закону квадратной параболы Приравнивая уравнение поперечной силы нулю, находим абсциссу того сечения, в котором эпюра Q переходит через нуль: Эпюра Q представлена на рис. 1.5, б. Изгибающий момент в произвольном сечении равен Изгибающий момент изменяется по закону кубической параболы: Максимальное значение изгибающий момент имеет в сечении, где 0, т. е. при Эпюра М представлена на рис. 1.5, в. 1.3. Построение эпюр Q и M по характерным сечениям (точкам) Используя дифференциальные зависимости между М, Q, q и выводы, вытекающие из них, целесообразно строить эпюры Q и М по характерным сечениям (без составления уравнений). Применяя этот способ, вычисляют значения Q и М в характерных сечениях. Характерными сечениями являются граничные сечения участков, а также сечения, где данный внутренний силовой фактор имеет экстремальное значение. В пределах между характерными сечениями очертание 12 эпюры устанавливается на основе дифференциальных зависимостей между М, Q, q и выводами, вытекающими из них. Пример 1.3 Построить эпюры Q и М для балки, изображенной на рис. 1.6, а. Рис. 1.6. Решение: Построение эпюр Q и М начинаем от свободного конца балки, при этом реакции в заделке можно не определять. Балка имеет три участка нагружения: АВ, ВС, CD. На участках АВ и ВС распределенная нагрузка отсутствует. Поперечные силы постоянны. Эпюра Q ограничена прямыми, параллельными оси абсцисс. Изгибающие моменты изменяются по линейному закону. Эпюра М ограничена прямыми, наклонными к оси абсцисс. На участке CD имеется равномерно распределенная нагрузка. Поперечные силы изменяются по линейному закону, а изгибающие моменты – по закону квадратной параболы с выпуклостью в сторону действия распределенной нагрузки. На границе участков АВ и ВС поперечная сила изменяется скачкообразно. На границе участков ВС и CD скачкообразно изменяется изгибающий момент. 1. Построение эпюры Q. Вычисляем значения поперечных сил Q в граничных сечениях участков: По результатам расчетов строим эпюру Q для балки (рис. 1, б). Из эпюры Q следует, что поперечная сила на участке CD равна нулю в сечении, отстоящем на расстоянии qa a q от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение. 2. Построение эпюры М. Вычисляем значения изгибающих моментов в граничных сечениях участков: При мaаксимальный момент на участке По результатам расчетов строим эпюру М (рис. 5.6, в). Пример 1.4 По заданной эпюре изгибающих моментов (рис. 1.7, а) для балки (рис. 1.7, б) определить действующие нагрузки и построить эпюру Q. Кружком обозначена вершина квадратной параболы. Решение: Определим нагрузки, действующие на балку. Участок АС загружен равномерно распределённой нагрузкой, так как эпюра М на этом участке – квадратная парабола. В опорном сечении В к балке приложен сосредоточенный момент, действующий по часовой стрелке, так как на эпюре М имеем скачок вверх на величину момента. На участке СВ балка не нагружена, т. к. эпюра М на этом участке ограничена наклонной прямой. Реакция опоры В определяется из условия, что изгибающий момент в сечении С равен нулю, т. е. Для определения интенсивности распределенной нагрузки составим выражение для изгибающего момента в сечении А как сумму моментов сил справа и приравняем к нулю Теперь определим реакцию опоры А. Для этого составим выражение для изгибающих моментов в сечении как сумму моментов сил слева Расчетная схема балки с нагрузкой показана на рис. 1.7, в. Начиная с левого конца балки, вычисляем значения поперечных сил в граничных сечениях участков: Эпюра Q представлена на рис. 1.7, г. Рассмотренная задача может быть решена путем составления функциональных зависимостей для М, Q на каждом участке. Выберем начало координат на левом конце балки. На участке АС эпюра М выражается квадратной параболой, уравнение которой имеет вид Постоянные а, b, с находим из условия, что парабола проходит через три точки с известными координатами: Подставляя координаты точек в уравнение параболы, получим: Выражение для изгибающего момента будет Дифференцируя функцию М1, получим зависимость для поперечной cилы После дифференцирования функции Q получим выражение для интенсивности распределённой нагрузки На участке СВ выражение для изгибающего момента представляется в виде линейной функции Для определения постоянных а и b используем условия, что данная прямая проходит через две точки, координаты которых известны Получим два уравнения: ,b из которых имеем a 20. Уравнение для изгибающего момента на участке СВ будет После двукратного дифференцирования М2 найдём По найденным значениям М и Q строим эпюры изгибающих моментов и поперечных сил для балки. Помимо распределённой нагрузки к балке прикладываются сосредоточенные силы в трех сечениях, где на эпюре Q имеются скачки и сосредоточенные моменты в том сечении, где на эпюре М имеется скачок. Пример 1.5 Для балки (рис. 1.8, а) определить рациональное положение шарнира С, при котором наибольший изгибающий момент в пролете равен изгибающему моменту в заделке (по абсолютной величине). Построить эпюры Q и М. Решение Определение реакций опор. Несмотря на то, что общее число опорных связей равно четырем, балка статически определима. Изгибающий момент в шарнире С равен нулю, что позволяет составить дополнительное уравнение: сумма моментов относительно шарнира всех внешних сил, действующих по одну сторону от этого шарнира, равна нулю. Составим сумму моментов всех сил справа от шарнира С. Эпюра Q для балки ограничена наклонной прямой, так как q = const. Определяем значения поперечных сил в граничных сечениях балки: Абсцисса xK сечения, где Q = 0, определяется из уравнения откуда Эпюра М для балки ограничена квадратной параболой. Выражения для изгибающих моментов в сечениях, где Q = 0, и в заделке записываются соответственно так: Из условия равенства моментов получаем квадратное уравнение относительно искомого параметра х: Реальное значение x2x 1,029 м. Определяем численные значения поперечных сил и изгибающих моментов в характерных сечениях балки На рис.1.8, б показана эпюра Q, а на рис. 1.8, в – эпюра М. Рассмотренную задачу можно было решить способом расчленения шарнирной балки на составляющие ее элементы, как это показано на рис. 1.8, г. В начале определяются реакции опор VC и VB . Строятся эпюры Q и М для подвесной балки СВ от действия приложенной к ней нагрузки. Затем переходят к основной балке АС, нагрузив ее дополнительной силой VC , являющейся силой давления балки СВ на балку АС. После чего строят эпюры Q и М для балки АС. 1.4. Расчеты на прочность при прямом изгибе балок Расчет на прочность по нормальным и касательным напряжениям. При прямом изгибе балки в поперечных сечениях ее возникают нормальные и касательные напряжения (рис. 1.9). 18 Рис. 1.9 Нормальные напряжения связаны с изгибающим моментом, касательные напряжения связаны с поперечной силой. При прямом чистом изгибе касательные напряжения равны нулю. Нормальные напряжения в произвольной точке поперечного сечения балки определяются по формуле (1.4) где M – изгибающий момент в данном сечении; Iz – момент инерции сечения относительно нейтральной оси z; y – расстояние от точки, где определяется нормальное напряжение, до нейтральной оси z. Нормальные напряжения по высоте сечения изменяются по линейному закону и достигают наибольшей величины в точках, наиболее удалённых от нейтральной оси Если сечение симметрично относительно нейтральной оси (рис. 1.11), то Рис. 1.11 наибольшие растягивающие и сжимающие напряжения одинаковы и определяются по формуле,  – осевой момент сопротивления сечения при изгибе. Для прямоугольного сечения шириной b высотой h: (1.7) Для круглого сечения диаметра d: (1.8) Для кольцевого сечения   – соответственно внутренний и наружный диаметры кольца. Для балок из пластичных материалов наиболее рациональными являются симметричные 20 формы сечений (двутавровое, коробчатое, кольцевое). Для балок из хрупких материалов, не одинаково сопротивляющихся растяжению и сжатию, рациональными являются сечения, несимметричные относительно нейтральной оси z (тавр., П-образное, несимметричный двутавр). Для балок постоянного сечения из пластичных материалов при симметричных формах сечений условие прочности записывается так: (1.10) где Mmax – максимальный изгибающий момент по модулю; – допускаемое напряжение для материала. Для балок постоянного сечения из пластичных материалов при несимметричных формах сечений условие прочности записывается в следующем виде: (1.11) Для балок из хрупких материалов с сечениями, несимметричными относительно нейтральной оси, в случае, если эпюра М однозначна (рис. 1.12), нужно записать два условия прочности – расстояния от нейтральной оси до наиболее удалённых точек соответственно растянутой и сжатой зон опасного сечения; P – допускаемые напряжения соответственно на растяжение и сжатие. Рис.1.12. 21 Если эпюра изгибающих моментов имеет участки разных знаков (рис. 1.13), то помимо проверки сечения 1-1, где действуетMmax, необходимо произвести расчет по наибольшим растягивающим напряжениям для сечения 2-2 (с наибольшим моментом противоположного знака). Рис. 1.13 Наряду с основным расчетом по нормальным напряжениям в ряде случаев приходится делать проверку прочности балки по касательным напряжениям. Касательные напряжения в балки вычисляются по формуле Д. И. Журавского (1.13) где Q – поперечная сила в рассматриваемом поперечном сечении балки; Szотс – статический момент относительно нейтральной оси площади части сечения, расположенной по одну сторону прямой, проведенной через данную точку и параллельной оси z; b – ширина сечения на уровне рассматриваемой точки; Iz – момент инерции всего сечения относительно нейтральной оси z. Во многих случаях максимальные касательные напряжения возникают на уровне нейтрального слоя балки (прямоугольник, двутавр, круг). В таких случаях условие прочности по касательным напряжениям записывается в виде, (1.14) где Qmax – наибольшая по модулю поперечная сила; – допускаемое касательное напряжение для материала. Для прямоугольного сечения балки условие прочности имеет вид (1.15) А – площадь поперечного сечения балки. Для круглого сечения условие прочности представляется в виде (1.16) Для двутаврового сечения условие прочности записывается так: (1.17) где Szо,тmсax – статический момент полусечения относительно нейтральной оси; d – толщина стенки двутавра. Обычно размеры поперечного сечения балки определяются из условия прочности по нормальным напряжениям. Проверка прочности балок по касательным напряжениям производится в обязательном порядке для коротких балок и балок любой длинны, если вблизи опор имеются сосредоточенные силы большой величины, а также для деревянных, клёпанных и сварных балок. Пример 1.6 Проверить прочность балки коробчатого сечения (рис. 1.14) по нормальным и касательным напряжениям, если МПа. Построить эпюры в опасном сечении балки. Рис. 1.14 Решение 23 1. Построение эпюр Q и М по характерным сечениям. Рассматривая левую часть балки, получим Эпюра поперечных сил представлена на рис. 1.14,в. Эпюра изгибающих моментов показана на рис. 5.14, г. 2. Геометрические характеристики поперечного сечения 3. Наибольшие нормальные напряжения в сечение С, где действует Mmax (по модулю): МПа. Максимальные нормальные напряжения в балке практически равны допускаемым. 4. Наибольшие касательные напряжения в сечении С (или А), где действует max Q (по модулю): Здесь – статический момент площади полусечения относительно нейтральной оси; b2 см – ширина сечения на уровне нейтральной оси. 5. Касательные напряжения в точке (в стенке) в сечении С: Рис. 1.15 Здесь Szomc 834,5 108 см3 – статический момент площади части сечения, расположенной выше линии, проходящей через точку K1; b2 см – толщина стенки на уровне точки K1. Эпюры  и  для сечения С балки показаны рис. 1.15. Пример 1.7 Для балки, показанной на рис. 1.16, а, требуется: 1. Построить эпюры поперечных сил и изгибающих моментов по характерным сечениям (точкам). 2. Определить размеры поперечного сечения в виде круга, прямоугольника и двутавра из условия прочности по нормальным напряжениям, сравнить площади сечений. 3. Проверить подобранные размеры сечений балок по касательным напряжения. Дано: Решение: 1. Определяем реакции опор балки Проверка: 2. Построение эпюр Q и М. Значения поперечных сил в характерных сечениях балки 25 Рис. 1.16 На участках CA и AD интенсивность нагрузки q = const. Следовательно, на этих участках эпюра Q ограничивается прямыми, наклонными к оси. На участке DB интенсивность распределенной нагрузки q = 0, следовательно, на этом участке эпюра Q ограничивается прямой, параллельной оси х. Эпюра Q для балки показана на рис. 1.16,б. Значения изгибающих моментов в характерных сечениях балки: На втором участке определяем абсциссу x2 сечения, в котором Q = 0: Максимальный момент на втором участке Эпюра М для балки показана на рис. 1.16, в. 2. Составляем условие прочности по нормальным напряжениям откуда определяем требуемый осевой момент сопротивления сечения из выражения определяемый требуемый диаметр d балки круглого сечения Площадь круглого сечения Для балки прямоугольного сечения Требуемая высота сечения Площадь прямоугольного сечения Определяем требуемый номер двутавровой балки. По таблицам ГОСТ 8239-89 находим ближайшее большее значение осевого момента сопротивления 597см3, которое соответствует двутавру № 33 с характеристиками: A z 9840 см4. Проверка на допуск: (недогрузка на 1 % от допустимого 5 %) ближайший двутавр № 30 (W 2 см3) приводит к значительной перегрузке (более 5%). Окончательно принимаем двутавр № 33. Сравниваем площади круглого и прямоугольного сечений с наименьшей площадью А двутавра: Из трех рассмотренных сечений наиболее экономичным является двутавровое сечение. 3. Вычисляем наибольшие нормальные напряжения в опасном сечении 27 двутавровой балки (рис. 1.17, а): Нормальные напряжения в стенке около полки двутаврового сечения балки Эпюра нормальных напряжений в опасном сечении балки показана на рис. 1.17, б. 5. Определяем наибольшие касательные напряжения для подобранных сечений балки. а) прямоугольное сечение балки: б) круглое сечение балки: в) двутавровое сечение балки: Касательные напряжения в стенке около полки двутавра в опасном сечении А (справа) (в точке 2): Эпюра касательных напряжений в опасных сечениях двутавра показана на рис. 1.17,в. Максимальные касательные напряжения в балке не превышают допускаемых напряжений Пример 1.8 Определить допускаемую нагрузку на балку (рис. 1.18, а), если60МПа, размеры поперечного сечения заданы (рис. 1.19, а). Построить эпюру нормальных напряжений в опасном сечении балки при допускаемой нагрузке. Рис 1.18 1. Определение реакций опор балки. Ввиду симметрии системы 2. Построение эпюр Q и M по характерным сечениям. Поперечные силы в характерных сечениях балки: Эпюра Q для балки показана на рис. 5.18, б. Изгибающие моменты в характерных сечениях балки Для второй половины балки ординаты М – по осям симметрии. Эпюра М для балки показана на рис. 1.18, б. 3.Геометрические характеристики сечения (рис. 1.19). Разбиваем фигуру на два простейших элемента: двутавр – 1 и прямоугольник – 2. Рис. 1.19 По сортаменту для двутавра № 20 имеем Для прямоугольника: Статический момент площади сечения относительно оси z1 Расстояние от оси z1 до центра тяжести сечения Момент инерции сечения относительно главной центральной оси z всего сечения по формулам перехода к параллельным осям 4. Условие прочности по нормальным напряжениям для опасной точки «а» (рис. 1.19) в опасном сечении I (рис. 1.18): После подстановки числовых данных 5. При допускаемой нагрузке в опасном сечении нормальные напряжения в точках «а» и «b» будут равны: Эпюра нормальных напряжений для опасного сечения 1-1 показана на рис. 1.19, б.



В продолжение темы:
Балкон и лоджия

С древних времен наши предки пытались угадать в сновидениях перст судьбы и придавали снам колоссальное значение, наделяя каждый увиденный предмет или событие символичным...

Новые статьи
/
Популярные