Мегаомметр старый советский какое напряжение. Знание особенностей проверяемой схемы. Требования по обеспечению безопасных условий работы

Мегаомметр

В приборах старых конструкций, для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамомашины . В настоящее время, мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (Диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегаомметром сопротивления изоляции

Сопротивление изоляции характеризует ее состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения ее испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В - мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более - мегаомметры на 2500 В и выше.

Степень увлажненности изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15") и в конце измерения - через 60 с после начала (R60"). Отношение этих показаний KA = R60"/R15" называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик - изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение ее сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Безопасность эксплуатации бытовых или промышленных электроустановок зависит от состояния изоляции проводников в них. В нашей стране существует сеть специализированных лабораторий, в задачу которых входят регулярные проверки предприятий и жилья.

Одним из приборов, который широко применяется сотрудниками этих организаций, является мегаомметр. Это название прибор получил в силу особенностей и своего функционального назначения. В числе прочих сотрудников нашей компании, я занимаюсь комплексными испытаниями электрических устройств разных видов и классов. Для каждой категории существуют собственные программы измерения параметров. Одной из важнейших характеристик электрооборудования является сопротивление изоляции силовых и иных контуров. Минимально допустимые значения этого показателя для каждой группы потребителей тока определены в ГОСТ 183-74.

Сопротивление изоляции не является величиной постоянной и зависит от многих факторов:

  1. температура и относительная влажность диэлектрика и кабеля;
  2. сроки и режимы эксплуатации оборудования;
  3. состава материалов и наличия примесей;
  4. наличие скрытых дефектов в изолирующем слое.

Снижение сопротивления изоляции может привести к довольно неприятным последствиям. Это может быть, в том числе и опасно для жизни людей, непосредственно соприкасающихся с работой электроприборов. Пробой диэлектрика может привести к короткому замыканию между обмотками или появлению напряжения на корпусе оборудования. Это приводит в свою очередь к выходу устройства из строя или к возможности поражения током человека.

Принцип работы и конструкция прибора для измерения сопротивления

В нашей лаборатории используются мегомметры разных видов и современные цифровые проверенные временем аналоговые устройства. Действие прибора основано на измерение силы тока и напряжения, результат получается в виде соотношения этих величин. Мегаомметр применяется для проверки сопротивления обмоток электрических машин или аппаратов. Для выполнения своих функций он оснащается источником тока.

В приборах старых конструкций – это генератор постоянного тока. У нас до сих пор используется прибор М1101М, который изготовлен почти полвека назад. Для приведения его в действие необходимо покрутить ручку динамо-машины, вырабатывающей постоянной ток. Несмотря на свой почтенный возраст, этот прибор до сих пор показывает достаточно высокую точность при максимальном значении напряжения в 1000 В.

Современные электронные приборы не имеют электромеханических генераторов, а в качестве источников тока в них применяются гальванические элементы или аккумуляторные батареи. Такие устройства удобнее в эксплуатации, нет необходимости во время проведения проверок крутить ручку динамо-машины. Цифровые мегомметры имеют запоминающие устройства и способны фиксировать результаты измерений.

В нашей компании используется изделие E6-32, которое ко всем прочим достоинствам является еще и вольтметром. В работе инженера КИП универсальность прибора имеет решающее значение. Упомянутый прибор используется для выполнения испытаний электрических сетей и приборов ненаходящихся под напряжением. Мультиметр рассчитан на максимальное напряжение в 700 В.

Mегаомметр E6-32 имеет обрезиненный корпус удобный для удерживания в процессе работы одной рукой. Клавиши управления находятся под эластичным полимерным покрытием, их расположение продумано. В целом устройство компактно и эргономично, может переноситься в карманах одежды, высвобождая руки. Этот прибор сравнительно недорогой и что немаловажно имеет достаточно высокие технические характеристики.

Специфика применения приборов и способы измерений

В процессе проведения испытаний разных установок нами применяются утвержденные методики. Для получения достоверных результатов сотрудниками сначала проводится изучение технической документации на изделие. Дело в том, что номинальное значение напряжения при проверке должно соответствовать классу электрооборудования. Иными словами, если аппарат рассчитан на работу в бытовых сетях, то и испытания проводятся прибором с максимальным напряжением в 250 В.

Такие проверки характерны для жилых, офисных и производственных помещений. Во избежание поражения током при пробое изоляции, проводка в них должна быть оборудована заземлением. Этот контур тоже в обязательном порядке подвергается проверке. При этом часто приходиться работать на открытых площадках и в разных климатических условиях. Наше оборудование надежно защищено от внешних воздействий.

Особенно, в этом плане, выделяются современные цифровые измерительные приборы как импортные, так и российские. Отличительной их особенностью является возможность выбора необходимого диапазона испытаний. При этом результаты таких тестов имеют очень высокую точность. Практика применения приборов такого класса позволяет значительно уменьшить трудозатраты при проведении поверочных работ.

Известно, что значение сопротивления изоляции изменяется не только под воздействием внешних условий: температура и влажность, но и в процессе длительной работы оборудования. для повышения достоверности исследований рекомендуется проведение измерений не ранее, чем через 60 секунд после подачи на установку номинального напряжения. такой подход позволяет максимально приблизить условия испытаний к реальным.

Сравнительные тесты демонстрируют относительно малые погрешности при использовании тех и других приборов. Использование конкретного вида измерителей, скорее, дело привычки, хотя, на мой взгляд, показания в цифровом виде удобнее для фиксации и обработки.

Название этого прибора составлено из трех слов: «мега», обозначающее размерность величины измерения (тысяча тысяч или 10 6), «ом» — единица электрического сопротивления, «метр» — сокращение от измерять. Сразу становится понятно техническое назначение прибора: измерение электрических сопротивлений в диапазоне мегаомов.

Часто знатоки русского языка исправляют это слово, исключая из него букву «а» под предлогом того, что две гласные подряд при произношении неблагозвучны. Но этот прием искажает заложенный в прибор смысл так же, как и сленг отдельных электриков — «мегер».

Принцип измерения сопротивления изоляции мегаомметром

В основу работы прибора положен знаменитый закон Ома для участка цепи I=U/R. Для его воплощения внутри корпуса у любой модификации встроены:

    источник постоянного, откалиброванного напряжения;

    измеритель тока;

    выходные клеммы.

Конструкция генератора напряжения может меняться в значительных пределах и создаваться на основе простых ручных динамо-машин, как в старых моделях, или за счет использования питания от встроенного либо внешнего источника.


Выходная мощность генератора, как и величина его напряжения, может включать несколько диапазонов или выполнятся единственной, фиксированной величиной.

На клеммы прибора подключаются соединительные провода, другой конец которых скоммутирован с измеряемой цепью. Для этих целей обычно используют зажимы типа «крокодил».

Встроенный внутрь электрической схемы амперметр . С учетом того, что напряжение генератора уже известно и откалибровано, то шкала измерительной головки проградуирована сразу в пересчитанных единицах сопротивления — мегаомах или килоомах.


Так выглядит шкала старого, проверенного пятидесятилетним сроком эксплуатации аналогового прибора серии М4100/5. Он позволяет выполнять замеры на двух пределах шкал:

1. мегаомах;

2. килоомах.

Если мегаомметр создан по новым технологиям обработки цифровых сигналов, то на его дисплее тоже отображается сопротивление, но в более наглядном виде.

Рассмотрим этот вопрос на примере упрощенной электрической схемы аналогового прибора.

При ее анализе явно выделяются составные части:

    генератор постоянного тока;

    измерительная головка, собранная на основе принципа взаимодействия двух рамок (рабочей и противодействующей);

    тумблер-переключатель пределов измерения, позволяющий коммутировать различные резисторные цепочки для изменения выходного напряжения и режима работы головки;

    токоограничивающие резисторы.

Довольно простая схема не содержит никаких лишних элементов. На герметичном, прочном диэлектрическом корпусе такого прибора размещены:

    ручка для удобства транспортировки;

    складная портативная рукоятка генератора, которую надо вращать для выработки напряжения;

    рычаг тумблера переключения режимов измерения;

    выходные клеммы для подключения соединительных проводов схемы.

Практически на всех конструкциях мегаомметров устанавливаются три выходные клеммы, которые называют:

    З — земля;

    Л — линия;

    Э — экран.

Клеммы земли и линии используются при всех измерениях сопротивления изоляции относительно контура заземления, а экранный вывод предназначен для ликвидации влияния токов утечек при проведении замеров между двумя параллельными жилами кабеля или других аналогичных токоведущих частей.

Для его включения в работу необходимо применять один измерительный провод специальной конструкции с экранированными концами. Им всегда комплектуется прибор на заводе. У него на одном конце установлено две клеммы, одна из них промаркирована буквой Э. Этот вывод подключается на соответствующую клемму мегаомметра.

Пример подключения измерительных концов к прибору демонстрирует рисунок.


Здесь вместо клемм «Л» и «З» используются индексы «rx» и «-». Это просто новая маркировка, которая заменяет старую на современных приборах.

На картинке видно, что клемма «Э» применяется для подключения к экрану или кожуху. Пользуются ею для проведения специальных точных замеров. Мегаомметры, использующие питание для генератора от встроенных батареек или внешней сети. работают по этим же принципам. Только у них не надо крутить ручку. Для выдачи напряжения на испытываемую схему у них удерживают кнопку в нажатом состоянии. Причем у приборов, способных выдавать несколько комбинаций напряжений, используется не одна, а две, три кнопки или их сочетания.

Внутреннее устройство таких мегаомметров намного сложнее. Его здесь не рассматриваем, поскольку этот вопрос больше относится к ремонтным работам, а не к измерениям.

Напряжение, которое выдает генератор мегаомметров различных моделей, может быть одной из следующих величин: 100, 250, 500, 700, 1000, 2500 вольт. Причем одни приборы работают на одном диапазоне, а другие обладают несколькими.

Выходная мощность приборов, созданных для проверки изоляции промышленного высоковольтного оборудования может в несколько раз превышать характеристики моделей, предназначенных для работы в условиях бытовой электропроводки. Габариты таких устройств тоже будут отличаться.

По этой причине ориентирование на маленькие конструкции, которые можно держать в кармане куртки, не во всех случаях может быть оправдано.

На что обращать внимание при работах с мегаоометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму.

По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ.

Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции.


На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения.

Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток I2. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

1. точностью выполнения замера;

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора.

В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд.


После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело.

По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения.


Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов.

После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением.

Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ.

Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Основные правила безопасного использования мегаомметра

Поверка и испытания

Любую работу в электроустановках разрешается выполнять только исправными электрическими устройствами.

Применительно к мегаомметру это означат, что он должен отвечать одновременно двум требованиям и быть:

1. испытанным;

2. поверенным.

Испытание означает проверку сопротивления его собственной изоляции и всех комплектующих частей в электрической испытательной лаборатории повышенным напряжением. На основе ее проведения владельцу прибора выдается сертификат, разрешающий эксплуатацию мегаомметра на определенный, ограниченный срок.

Поверка выполняется специалистами метрологической лаборатории с целью определения класса точности прибора и нанесения на его корпусе клейма о прохождении контрольных замеров. Владелец обязан принимать меры к сохранности нанесенного клейма с датой и номером поверителя. Если оно исчезнет, то прибор автоматически считается неисправным.

Виды работ

Мегаомметр выбирают для каждого замера в первую очередь по величине выходного напряжения. Им можно выполнять два разных вида проверок:

1. испытания изоляции;

2. измерение сопротивления диэлектрического слоя.

Первый способ подразумевает создание экстремального случая для испытуемого участка. С этой целью на него подается не номинальное, а завышенное напряжение, предусмотренное технической документацией. Время испытаний тоже выбирают довольно большим. Это позволяет своевременно выявить все дефекты изоляции и исключить их проявление в процессе эксплуатации.

Второй метод использует более щадящий режим. Напряжение для него подбирается меньшего значения, а время замера определяется длительностью окончания емкостного заряда измерительного участка. У электродинамических приборов оно не превышает минуты (столько надо крутить ручку со скоростью 120÷140 об/мин), а у электронных — порядка 30 секунд (держать нажатую кнопку).

Например, измерение сопротивления изоляции определенной электрической цепи необходимо выполнять мегаомметром, выдающим 500 вольт на выходе. Тогда для ее испытания потребуется прибор на 1000 V.

Измерением изоляции занимается электротехнический персонал различных профессий, а функция испытания предоставляется только специалистам лаборатории службы изоляции. Довольно часто им возможностей мегаомметра для этих целей не хватает, и они включают в работу дополнительные установки и источники постороннего напряжения, обладающие более высокими мощностями и измерительными возможностями.

Знание особенностей проверяемой схемы

До подачи высокого напряжения на измеряемый участок необходимо принять меры, исключающие поломки и неисправности его компонентов. В современном электрооборудовании работает много полупроводниковых элементов, различных конденсаторов, измерительных и микропроцессорных приборов. Они не рассчитаны на условия эксплуатации, которые создает напряжение генератора мегаомметра.

Все подобные устройства необходимо защитить. Для этого их извлекают из схемы или шунтируют определенным образом.

После окончания замеров вся схема должна быть восстановлена и приведена в рабочее состояние.

Как выполнить измерение сопротивления изоляции

1. подготовительную часть;

2. выполнение измерений;

3. заключительный этап.

Во время подготовки необходимо:

    решить организационные мероприятия, определиться с исполнителями и их квалификацией;

    ознакомиться со схемой электроустановки и предусмотреть меры, исключающие поломки ее составных частей;

    подготовить защитные средства и исправные приборы измерения;

    вывести участок электрооборудования из работы.

Перед началом работы с мегаомметром важно убедиться в его исправности. Для этого подключают к его выводам измерительные провода и закорачивают их выходные концы между собой. Затем подают напряжение от генератора и контролируют показание.

Исправный прибор должен измерить закороченную цепь и показать результат — 0. Затем концы разъединяют, отводят в стороны и выполняют повторный замер. На шкале должна отобразиться уже другая величина — ∞. Это сопротивление изоляции воздушного промежутка между разомкнутыми концами мегаомметра.

На основании этих двух показаний делается вывод о технической исправности прибора, целостности соединительных проводов и готовности к работе.

Выполнение непосредственного измерения сопротивления изоляции одного провода сводится к строгой последовательности действий:

1. подсоединение переносного заземления к контуру земли;

2. проверка и обеспечение отсутствия напряжения на испытуемом участке;

3. установка переносного заземления на время подключения прибора;

4. сборка схемы измерения мегаомметра;

5. снятие переносного заземления;

6. подача калиброванного напряжения на схему до момента выравнивания емкостного заряда и фиксация отсчета с последующим снятием напряжения;

7. наложение переносного заземления для снятия остаточного заряда;

8. отключение соединительного провода прибора со схемы;

9. снятие переносного заземления.

Замер сопротивления выполняется при наибольшем пределе МΩ. Когда его величина становится недостаточной, то переходят на более точный диапазон.

На всех последующих цепочках измерения эта последовательность должна строго соблюдаться. У некоторых моделей мегаомметров предусмотрен прерывистый режим, когда напряжение выдается в течение 1 минуты и после этого должна выдерживаться двухминутная пауза. Пренебрегать этим ограничением нельзя.

Электродинамические приборы со стрелочным индикатором предназначены для замеров при горизонтальной ориентации корпуса. Если нарушить это требование, то возникает дополнительная погрешность. Большинство цифровых современных мегаомметров лишены этого недостатка.

Все замеры записывают в заранее подготовленный протокол и скрепляют подписями ответственных работников. В нем отображаются условия проведения работы и заводские номера используемых приборов.

Заключительный этап

Все разобранные цепочки должны быть восстановлены. Шунты и закоротки, установленные для безопасного выполнения измерений, снимаются.

Схема приводится в готовность к подаче рабочего напряжения для ввода в работу.

На заключительном этапе заканчивается документальное оформление результатов измерения сопротивления изоляции.

Внимание! Материал статьи носит рекомендательный характер и предназначен для ознакомительных целей начинающим специалистам. Более точная трактовка правил пользования мегаомметрами изложена в соответствующей технической документации и действующих нормативах. Знание и выполнение их требований — профессиональная обязанность каждого электрика.

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор - мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.


Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.


Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт - 0.5 МОм. Для промышленных устройств не меньше - 1МОм.

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.


Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на или выкрутить пробки. После выключают все полупроводниковые приборы.


Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:



Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.


На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:



Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элемента Напряжение мегаомметра Минимально допустимое сопротивление изоляции Примечания
Электроизделия и аппараты с напряжением до 50 В 100 В Должно соответствовать паспортным, но не менее 0,5 МОм Во время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В 250 В
тоже, но напряжением от 100 В до 380 В 500-1000 В
свыше 380 В, но не больше 1000 В 1000-2500 В
Распределительные устройства, щиты, токопроводы 1000-2500 В Не менее 1 МОм Измерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть 1000 В Не менее 0,5 МОм В опасных помещениях измерения проводятся раз в год, в друих - раз в 3 года
Стационарные электроплиты 1000 В Не менее 1 МОм Измерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.


После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).


Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.


Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.



В продолжение темы:
Крыша

Специфический кисло-сладкий вкус клюквы прекрасно дополняет не только десерты, но и мясные блюда. Именно поэтому клюкву часто используют в качестве основы для приготовления...

Новые статьи
/
Популярные