Расчет стальной стойки на прочность. Excel Калькуляторы для металлических конструкций

1. Получение сведений о материале стержня для определения предельной гибкости стержня расчетным путем или по таблице:

2. Получение сведений о геометрических размерах поперечно­го сечения, длине и способах закрепления концов для определения категории стержня в зависимости от гибкости:

где А - площадь сечения; J m i n - минимальный момент инерции (из осевых);

μ - коэффициент приведенной длины.

3. Выбор расчетных формул для определения критической силы и критического напряжения.

4. Проверка и обеспечение устойчивости.

При расчете по формуле Эйлера условие устойчивости:

F - действующая сжимающая сила; - допускаемый коэффици­ент запаса устойчивости.

При расчете по формуле Ясинского

где a, b - расчетные коэффициенты, зависящие от материала (величины ко­эффициентов приводятся в таблице 36.1)

В случае невыполнения условий устойчивости необходимо уве­личить площадь поперечного сечения.

Иногда необходимо определить запас устойчивости при задан­ном нагружении:

При проверке устойчивости сравнивают расчетный запас вынос­ливости с допускаемым:

Примеры решения задач

Решение

1. Гибкость стержня определяется по формуле

2. Определяем минимальный радиус инерции для круга.

Подставив выражения для J min и А (сечение круг)

  1. Коэффициент приведения длины для данной схемы крепле­ния μ = 0,5.
  2. Гибкость стержня будет равна

Пример 2. Как изменится критическая сила для стержня, ес­ли изменить способ закрепления концов? Сравнить представленные схемы (рис. 37.2)

Решение

Критическая сила увеличится в 4 раза.

Пример 3. Как изменится критическая сила при расчете на устойчивость, если стержень двутаврового сечения (рис. 37.3а, дву­тавр № 12) заменить стержнем прямоугольного сечения той же пло­щади (рис. 37.3б) ? Остальные параметры конструкции не меняются. Расчет выполнить по формуле Эйлера.



Решение

1. Определим ширину сечения прямоугольника, высота сечения равна высоте сечения двутавра. Геометрические параметры двутавра № 12 по ГОСТ 8239-89 следующие:

площадь сечения А 1 = 14,7см 2 ;

минимальный из осевых моментов инерции.

По условию площадь прямоугольного сечения равна площади сечения двутавра. Определяем ширину полосы при высоте 12 см.

2. Определим минимальный из осевых моментов инерции.

3. Критическая сила определяется по формуле Эйлера:

4. При прочих равных условиях отношение критических сил рав­но отношению минимальных моментов инерции:

5. Таким образом, устойчивость стержня с сечением двутавр № 12 в 15 раз выше, чем устойчивость стержня выбранного пря­моугольного сечения.

Пример 4. Проверить устойчивость стержня. Стержень длиной 1 м защемлен одним концом, сечение - швеллер № 16, материал - СтЗ, запас устойчивости трехкратный. Стержень нагружен сжима­ющей силой 82 кН (рис. 37.4).

Решение

1. Определяем основные геометрические пара­метры сечения стержня по ГОСТ 8240-89. Швеллер № 16: площадь сечения 18,1см 2 ; минимальный осевой момент сечения 63,3 см 4 ; мини­мальный радиус инерции сечения г т; п = 1,87см.

Предельная гибкость для материала СтЗ λ пред = 100.

Расчетная гибкость стержня при длине l = 1м = 1000мм

Рассчитываемый стержень - стержень большой гибкости, рас­чет ведем по формуле Эйлера.

4. Условие устойчивости

82кН < 105,5кН. Устойчивость стержня обеспечена.

Пример 5. На рис. 2.83 показана расчетная схема трубчатой стойки самолетной конструкции. Проверить стойку на устойчивость при [n у ] = 2,5, если она изготовлена из хромоникелевой стали, для которой Е = 2,1*10 5 и σ пц = 450 Н/мм 2 .

Решение

Для расчёта на устойчивость должна быть известна критическая сила для заданной стойки. Необходимо установить, по какой формуле следует вычислять критическую силу, т. е. надо сопоставить гибкость стойки с предельной гибкостью для её материала.

Вычисляем величину предельной гибкости, так как табличных данных о λ, пред для материала стойки не имеется:

Для определения гибкости рассчитываемой стойки вычисляем геометрические характеристики ее поперечного сечения:

Определяем гибкость стойки:

и убеждаемся, что λ < λ пред, т. е. критическую силу можно опреде­лить ею формуле Эйлера:

Вычисляем расчетный (действительный) коэффициент запаса устойчивости:

Таким образом, n у > [n у ] на 5,2%.

Пример 2.87. Проверить на прочность и устойчи­вость заданную стержневую систему (рис. 2.86), Материал стержней - сталь Ст5 (σ т = 280 Н/мм 2). Требуемые коэффи­циенты запаса: прочности [n] = 1,8; устойчивости = 2,2. Стержни имеют круглое поперечное сечение d 1 = d 2 = 20 мм, d 3 = 28 мм.

Решение

Вырезая узел, в котором сходятся стержни, и составляя уравнения равновесия для действующих на него сил (рис. 2.86)

устанавливаем, что заданная система статически неопре­делима (три неизвестных усилия и два уравнения ста­тики). Ясно, что для расчета стержней на прочность и устойчивость необходимо знать величины продольных сил, возникающих в их поперечных сечениях, т. е. нужно раскрыть статическую неопределимость.

Составляем уравнение перемещений на основе диа­граммы перемещений (рис. 2.87):

или, подставляя значения изменений длин стержней, по­лучаем

Решив это уравнение совместно с уравнениями ста­тики, найдем:

Напряжения в поперечных сечениях стержней 1 и 2 (см. рис. 2.86):

Их коэффициент запаса прочности

Для определения коэффициента запаса устойчивости стержня 3 надо вычислить критическую силу, а это тре­бует определения гибкости стержня, чтобы решить, какой формулой для нахождения N Kp следует воспользоваться.

Итак, λ 0 < λ < λ пред и крити­ческую силу следует определять по эмпирической формуле:

Коэффициент запаса устой­чивости

Таким образом, расчет пока­зывает, что коэффициент запаса устойчивости близок к требуемо­му, а коэффициент запаса проч­ности значительно выше требуемого, т. е. при увеличении нагрузки системы потеря устойчивости стержнем 3 вероят­нее, чем возникновение текучести в стержнях 1 и 2.

Металлические конструкции тема сложная, крайне ответственная. Даже небольшая ошибка может стоить сотни тысяч и миллионы рублей. В некоторых случаях ценой ошибки может стать жизнь людей на стройке, а так же в процессе эксплуатации. Так, что проверять и перепроверять расчеты — нужно и важно.

Использование Эксель для решения расчетных задач — дело с одной стороны не новое, но при этом не совсем привычное. Однако, у Эксель расчетов есть ряд неоспоримых преимуществ:

  • Открытость — каждый такой расчет можно разобрать по косточкам.
  • Доступность — сами файлы существуют в общем доступе, пишутся разработчиками МК под свои нужды.
  • Удобство — практически любой пользователь ПК способен работать с программами из пакета MS Office, тогда как специализированные конструкторские решения — дороги, и кроме того требуют серьезных усилий для своего освоения.

Не стоит их считать панацеей. Такие расчеты позволяют решать узкие и относительно простые конструкторские задачи. Но они не учитывают работы конструкции как целого. В ряде простых случаев могут спасти много времени:

  • Расчет балки на изгиб
  • Расчет балки на изгиб онлайн
  • Проверить расчет прочности и устойчивости колонны.
  • Проверить подбор сечения стержня.

Универсальный расчетный файл МК (EXCEL)

Таблица для подбора сечений металлоконструкций, по 5 различным пунктам СП 16.13330.2011
Собственно с помощью этой программы можно выполнить следующие расчеты:

  • расчет однопролетной шарнирной балки.
  • расчет центрально сжаты элементов (колонн).
  • расчет растянутых элементов.
  • расчет внецентренно-сжатых или сжато-изгибаемых элементов.

Версия Excel должна быть не ниже 2010. Чтобы увидеть инструкцию, нажмите на плюс в верхнем левом углу экрана.

МЕТАЛЛИКА

Программа представляет из себя книгу EXCEL с поддержкой макросов.
И предназначена для расчета стальных конструкций согласно
СП16 13330.2013 «Стальные конструкции»

Подбор и расчет прогонов

Подбор прогона — задача лишь на первый взгляд тривиальная. Шаг прогонов и их размер зависят от многих параметров. И хорошо бы иметь под рукой соответствующий расчет. Собственно об этом и рассказывает статья обязательная к ознакомлению:

  • расчет прогона без тяжей
  • расчет прогона с одним тяжем
  • расчет прогона с двумя тяжами
  • расчет прогона с учетом бимомента:

Но есть небольшая ложка дегтя — судя по всему в файле имеются ошибки в расчетной части.

Расчет моментов инерции сечения в таблицы excel

Если вам надо быстро посчитать момент инерции составного сечения, или нет возможности определить ГОСТ по которому сделаны металлоконструкции, тогда вам на помощь придет этот калькулятор. Внизу таблицы небольшое пояснение. В целом работа проста — выбираем подходящее сечение, задаем размеры этих сечений, получаем основные параметры сечения:

  • Моменты инерции сечения
  • Моменты сопротивления сечения
  • Радиус инерции сечения
  • Площадь сечения
  • Статического момента
  • Расстояния до центра тяжести сечения.

В таблице реализованы расчеты для следующих типов сечений:

  • труба
  • прямоугольник
  • двутавр
  • швеллер
  • прямоугольная труба
  • треугольник

Часто люди, делающие во дворе крытый навес для автомобиля или для защиты от солнца и атмосферных осадков, сечение стоек, на которые будет опираться навес, не рассчитывают, а подбирают сечение на глаз или проконсультировавшись у соседа.

Понять их можно, нагрузки на стойки, в данном случае являющиеся колоннами, не ахти какие большие, объем выполняемых работ тоже не громадный, да и внешний вид колонн иногда намного важнее их несущей способности, поэтому даже если колонны будут сделаны с многократным запасом по прочности - большой беды в этом нет. Тем более, что на поиски простой и внятной информации о расчете сплошных колонн можно потратить бесконечное количество времени без какого-либо результата - разобраться в примерах расчета колонн для производственных зданий с приложением нагрузки в нескольких уровнях без хороших знаний сопромата практически невозможно, а заказ расчета колонны в инженерной организации может свести всю ожидаемую экономию к нулю.

Данная статья написана с целью хоть немного изменить существующее положение дел и является попыткой максимально просто изложить основные этапы расчета металлической колонны, не более того. Все основные требования по расчету металлических колонн можно найти в СНиП II-23-81 (1990).

Общие положения

С теоретической точки зрения расчет центрально-сжатого элемента, каковым является колонна, или стойка в ферме, настолько прост, что даже неудобно об этом говорить. Достаточно разделить нагрузку на расчетное сопротивление стали, из которой будет изготавливаться колонна - все. В математическом выражении это выглядит так:

F = N/R y (1.1)

F - требуемая площадь сечения колонны, см²

N - сосредоточенная нагрузка, прилагаемая к центру тяжести поперечного сечения колонны, кг;

R y - расчетное сопротивление металла растяжению, сжатию и изгибу по пределу текучести, кг/см². Значение расчетного сопротивления можно определить по соответствующей таблице .

Как видим, уровень сложности задачи относится ко второму, максимум к третьему классу начальной школы. Однако на практике все далеко не так просто, как в теории, по ряду причин:

1. Приложить сосредоточенную нагрузку точно к центру тяжести поперечного сечения колонны можно только теоретически. В реальности нагрузка всегда будет распределенной и еще будет некоторый эксцентриситет приложения приведенной сосредоточенной нагрузки. А раз есть эксцентриситет, значит есть продольный изгибающий момент действующий в поперечном сечении колонны.

2. Центры тяжести поперечных сечений колонны расположены на одной прямой - центральной оси, тоже только теоретически. На практике из-за неоднородности металла и различных дефектов центры тяжести поперечных сечений могут быть смещены относительно центральной оси. А это значит, что расчет нужно производить по сечению, центр тяжести которого максимально удален от центральной оси, из-за чего эксцентриситет действия силы для этого сечения максимальный.

3. Колонна может иметь не прямолинейную форму, а быть немного изогнутой в результате заводской или монтажной деформации а это значит, что поперечные сечения в средней части колонны будут иметь наибольший эксцентриситет приложения нагрузки.

4. Колонна может быть установлена с отклонениями от вертикали, а это значит, что вертикально действующая нагрузка может создавать дополнительный изгибающий момент, максимальный в нижней части колонны, а если точнее, в месте крепления к фундаменту, впрочем это актуально, только для отдельно стоящих колонн.

5. Под действием приложенных к ней нагрузок колонна может деформироваться, а это значит, что опять появится эксцентриситет приложения нагрузки и как следствие дополнительный изгибающий момент.

6. В зависимости от того, как именно закреплена колонна, зависит значение дополнительного изгибающего момента внизу и в средней части колонны.

Все это приводит к появлению продольного изгиба и влияние это изгиба при расчетах нужно как-то учитывать.

Естественно, что рассчитать вышеуказанные отклонения для конструкции, которая еще только проектируется, практически невозможно - расчет будет очень долгим, сложным, а результат все равно сомнительным. А вот ввести в формулу (1.1) некий коэффициент, который бы учел вышеизложенные факторы, очень даже можно. Таким коэффициентом является φ - коэффициент продольного изгиба. Формула, в которой используется данный коэффициент, выглядит так:

F = N/φR (1.2)

Значение φ всегда меньше единицы, это означает, что сечение колонны всегда будет больше, чем если просто посчитать по формуле (1.1), это я к тому, что сейчас начнется самое интересное и помнить, что φ всегда меньше единицы - не помешает. Для предварительных расчетов можно использовать значение φ в пределах 0,5-0,8. Значение φ зависит от марки стали и гибкости колонны λ :

λ = l ef /i (1.3)

l ef - расчетная длина колонны. Расчетная и реальная длина колонны - разные понятия. Расчетная длина колонны зависит от способа закрепления концов колонны и определяется с помощью коэффициента μ :

l ef = μl (1.4)

l - реальная длина колонны, см;

μ - коэффициент, учитывающий способ закрепления концов колонны. Значение коэффициента можно определить по следующей таблице:

Таблица 1. Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения (согласно СНиП II-23-81 (1990))

Как видим, значение коэффициента μ изменяется в несколько раз в зависимости от способа закрепления колонны и тут главная сложность в том, какую расчетную схему выбрать. Если не знаете, какая схема закрепления соответствует Вашим условиям, то принимайте значение коэффициента μ=2. Значение коэффициента μ=2 принимается в основном для отдельно стоящих колон, наглядный пример отдельно стоящей колонны - фонарный столб. Значение коэффициента μ=1-2 можно принимать для колонн навесов, на которые опираются балки без жесткого крепления к колонне. Данную расчетную схему можно принимать, когда балки навеса будут не жестко крепиться к колоннам и когда балки будут иметь относительно большой прогиб. Если на колонну будут опираться фермы, жестко прикрепленные к колонне сваркой, то можно принимать значение коэффициента μ=0,5-1. Если между колоннами будут диагональные связи, то можно принимать значение коэффициента μ=0,7 при нежестком креплении диагональных связей или 0,5 при жестком креплении. Однако такие диафрагмы жесткости не всегда бывают в 2 плоскостях и потому использовать такие значения коэффициента нужно осторожно. При расчете стоек ферм используется коэффициент μ=0,5-1 в зависимости от метода закрепления стоек.

Значение коэффициента гибкости приблизительно показывает отношение расчетной длины колонны к высоте или ширине поперечного сечения. Т.е. чем больше значение λ , тем меньше ширина или высота поперечного сечения колонны и соответственно тем больший запас по сечению потребуется при одной и той же длине колонны, но об этом чуть позже.

Теперь когда мы определили коэффициент μ , можно вычислить расчетную длину колонны по формуле (1.4), а для того, чтобы узнать значение гибкости колонны, нужно знать радиус инерции сечения колонны i :

где I - момент инерции поперечного сечения относительно одной из осей, и тут начинается самое интересное, потому как в ходе решения задачи мы как раз и должны определить необходимую площадь сечения колонны F , но этого мало, оказывается, мы еще должны знать значение момента инерции. Так как мы не знаем ни того, ни другого, то решение задачи выполняется в несколько этапов.

На предварительном этапе обычно принимается значение λ в пределах 90-60, для колонн с относительно небольшой нагрузкой можно принимать λ = 150-120 (максимальное значение для колонн - 180, значения предельной гибкости для других элементов можно узнать по таблице 19* СНиП II-23-81 (1990). Затем по Таблице 2 определяется значение коэффициента гибкости φ :

Таблица 2. Коэффициенты продольного изгиба φ центрально-сжатых элементов .

Примечание : значения коэффициента φ в таблице увеличены в 1000 раз.

После этого определяется требуемый радиус инерции поперечного сечения, путем преобразования формулы (1.3):

i = l ef / λ (1.6)

По сортаменту подбирается прокатный профиль с соответствующим значением радиуса инерции. В отличие от изгибаемых элементов, где сечение подбирается только по одной оси, так как нагрузка действует только в одной плоскости, в центрально сжатых колоннах продольный изгиб может произойти относительно любой из осей и потому чем ближе значение I z к I y , тем лучше, другими словами наиболее предпочтительны профили круглого или квадратного сечения. Ну а теперь попробуем определить сечение колонны на основе полученных знаний.

Пример расчета металлической центрально-сжатой колонны

Имеется: желание сделать навес возле дома приблизительно следующего вида:

В данном случае единственной центрально-сжатой колонной при любых условиях закрепления и при равномерно распределенной нагрузке будет колонна, показанная на рисунке красным цветом. Кроме того и нагрузка на эту колонну будет максимальной. Колонны, обозначенные на рисунке синим и зеленым цветом, можно рассматривать как центрально-сжатые, только при соответствующем конструктивном решении и равномерно-распределенной нагрузке, колонны, обозначенные оранжевым цветом, будут или центрально сжатыми или внецентренно-сжатыми или стойками рамы, рассчитываемой отдельно. В данном примере мы рассчитаем сечение колонны, обозначенной красным цветом. Для расчетов примем постоянную нагрузку от собственного веса навеса 100 кг/м² и временную нагрузку 100 кг/м² от снегового покрова.

2.1. Таким образом сосредоточенная нагрузка на колонну, обозначенную красным цветом, составит:

N = (100+100)·5·3 = 3000 кг

2.2. Принимаем предварительно значение λ = 100, тогда по таблице 2 коэффициент изгиба φ = 0,599 (для стали с расчетной прочностью 200 МПа, данное значение принято для обеспечения дополнительного запаса по прочности), тогда требуемая площадь сечения колонны:

F = 3000/(0,599·2050) = 2,44 см²

2.3. По таблице 1 принимаем значение μ = 1 (так как кровельное покрытие из профилированного настила, должным образом закрепленное, будет обеспечивать жесткость конструкции в плоскости, параллельной плоскости стены, а в перпендикулярной плоскости относительную неподвижность верхней точки колонны будет обеспечивать крепление стропил к стене), тогда радиус инерции

i = 1·250/100 = 2,5 cм

2.4. По сортаменту для квадратных профильных труб данным требованиям удовлетворяет профиль с размерами поперечного сечения 70х70 мм с толщиной стенки 2 мм, имеющий радиус инерции 2,76 см. Площадь сечения такого профиля 5,34 см². Это намного больше, чем требуется по расчету.

2.5.1. Мы можем увеличить гибкость колонны, при этом требуемый радиус инерции уменьшится. Например, при λ = 130 коэффициент изгиба φ = 0,425, тогда требуемая площадь сечения колонны:

F = 3000/(0,425·2050) = 3,44 см²

2.5.2. Тогда

i = 1·250/130 = 1,92 cм

2.5.3. По сортаменту для квадратных профильных труб данным требованиям удовлетворяет профиль с размерами поперечного сечения 50х50 мм с толщиной стенки 2 мм, имеющий радиус инерции 1,95 см. Площадь сечения такого профиля 3,74 см², момент сопротивления для этого профиля составляет 5,66 см³.

Вместо квадратных профильных труб можно использовать равнополочный уголок, швеллер, двутавр, обычную трубу. Если расчетное сопротивление стали выбранного профиля больше 220 МПа, то можно пересчитать сечение колонны. Вот в принципе и все, что касается расчета металлических центрально-сжатых колонн.

Расчет внецентренно-сжатой колонны

Тут конечно же возникает вопрос: а как рассчитать остальные колонны? Ответ на этот вопрос сильно зависит от способа крепления навеса к колоннам. Если балки навеса будут жестко крепиться к колоннам, то при этом будет образована достаточно сложная статически неопределимая рама и тогда колонны следует рассматривать как часть этой рамы и рассчитывать сечение колонн дополнительно на действие поперечного изгибающего момента, мы же далее рассмотрим ситуацию когда колонны, показанные на рисунке, соединены с навесом шарнирно (колонну, обозначенную красным цветом, мы больше не рассматриваем). Например оголовок колонн имеет опорную площадку - металлическую пластину с отверстиями для болтового крепления балок навеса. По разным причинам нагрузка на такие колонны может передаваться с достаточно большим эксцентриситетом:

Балка, показанная на рисунке, бежевым цветом, под воздействием нагрузки немного прогнется и это приведет к тому, что нагрузка на колонну будет передаваться не по центру тяжести сечения колонны, а с эксцентриситетом е и при расчете крайних колонн этот эксцентриситет нужно учитывать. Случаев внецентренного нагружения колонн и возможных поперечных сечений колонн существует великое множество, описываемое соответствующими формулами для расчета. В нашем случае для проверки сечения внецентренно-сжатой колонны мы воспользуемся одной из самых простых:

(N/φF) + (M z /W z) ≤ R y (3.1)

В данном случае, когда сечение самой нагруженной колонны мы уже определили, нам достаточно проверить, подходит ли такое сечение для остальных колонн по той причине, что задачи строить сталелитейный завод у нас нет, а мы просто рассчитываем колонны для навеса, которые будут все одинакового сечения из соображений унификации.

Что такое N , φ и R y мы уже знаем.

Формула (3.1) после простейших преобразований, примет следующий вид:

F = (N/R y)(1/φ + e z ·F/W z) (3.2)

так как М z =N·e z , почему значение момента именно такое и что такое момент сопротивления W, достаточно подробно объясняется в отдельной статье.

на колонны, обозначенные на рисунке синим и зеленым цветом, составит 1500 кг. Проверяем требуемое сечение при такой нагрузке и ранее определенном φ = 0,425

F = (1500/2050)(1/0,425 + 2,5·3,74/5,66) = 0,7317·(2,353 + 1,652) = 2,93 см²

Кроме того, формула (3.2) позволяет определить максимальный эксцентриситет, который выдержит уже рассчитанная колонна, в данном случае максимальный эксцентриситет составит 4,17 см.

Требуемое сечение 2,93 см² меньше принятого 3,74 см², а потому квадратную профильную трубу с размерами поперечного сечения 50х50 мм с толщиной стенки 2 мм можно использовать и для крайних колонн.

Расчет внецентренно-сжатой колонны по условной гибкости

Как ни странно, но для подбора сечения внецентренно-сжатой колонны - сплошного стержня есть еще более простая формула:

F = N/φ е R (4.1)

φ е - коэффициент продольного изгиба, зависящий от эксцентриситета, его можно было бы назвать эксцентриситетным коэффициентом продольного прогиба, чтобы не путать с коэффициентом продольного прогиба φ . Однако расчет по этой формуле может оказаться более длительным чем по формуле (3.2). Чтобы определить коэффициент φ е необходимо все равно знать значение выражения e z ·F/W z - которое мы встречали в формуле (3.2). Это выражение называется относительным эксцентриситетом и обозначается m :

m = e z ·F/W z (4.2)

После этого определяется приведенный относительный эксцентриситет:

m ef = hm (4.3)

h - это не высота сечения, а коэффициент, определяемый по таблице 73 СНиПа II-23-81. Просто скажу, что значение коэффициента h изменяется в пределах от 1 до 1,4, для большинства простых расчетов можно использовать h = 1,1-1,2.

После этого нужно определить условную гибкость колонны λ¯ :

λ¯ = λ√‾(R y / E) (4.4)

и только после этого по таблице 3 определить значение φ е :

Таблица 3. Коэффициенты φ e для проверки устойчивости внецентренно-сжатых (сжато-изгибаемых) сплошностенчатых стержней в плоскости действия момента, совпадающей с плоскостью симметрии.

Примечания:

1. Значения коэффициента φ е увеличены в 1000 раз.
2. Значение φ е следует принимать не более φ .

Теперь для наглядности проверим сечение колонн, нагруженных с эксцентриситетом, по формуле (4.1):

4.1. Сосредоточенная нагрузка на колонны, обозначенные синим и зеленым цветом, составит:

N = (100+100)·5·3/2 = 1500 кг

Эксцентриситет приложения нагрузки е = 2,5 см, коэффициент продольного изгиба φ = 0,425.

4.2. Значение относительного эксцентриситета мы уже определяли:

m = 2,5·3,74/5,66 = 1,652

4.3. Теперь определим значение приведенного коэффициента m ef :

m ef = 1,652·1,2 = 1,984 ≈ 2

4.4. Условная гибкость при принятом нами коэффициенте гибкости λ = 130, прочности стали R y = 200 МПа и модуле упругости Е = 200000 МПа составит:

λ¯ = 130√‾(200/200000) = 4,11

4.5. По таблице 3 определяем значение коэффициента φ е ≈ 0,249

4.6. Определяем требуемое сечение колонны:

F = 1500/(0,249·2050) = 2,94 см²

Напомню, что при определении площади сечения колонны по формуле (3.1) мы получили почти такой же результат.

Совет: Чтобы нагрузка от навеса передавалась с минимальным эксцентриситетом, в опорной части балки делается специальная площадка. Если балка металлическая, из прокатного профиля, то обычно достаточно приварить к нижней полке балки кусок арматуры.

На практике часто возникает необходимость расчета стойки или колони на максимальную осевую (продольную) нагрузку. Усилие, при котором стойка теряет устойчивое состояние (несущую способность) является критическим. На устойчивость стойки оказывает влияние способ закрепления концов стойки. В строительной механике рассматривают семь способов закрепления концов стойки. Ми рассмотрим три основных способа:

Для обеспечения определенного запаса устойчивости необходимо чтобы соблюдалось условие:

Где: Р - действующее усилие;

Устанавливается определенный коэффициент запаса устойчивости

Таким образом, при расчете упругих систем необходимо уметь определять величину критической силы Ркр. Если иметь введу что усилие Р приложено к стойке вызывает только малые отклонения от прямолинейной формы стойки длиной ι то его можно определить из уравнения

где: E - модуль упругости;
J_min- минимальный момент инерции сечения;
M(z) - изгибающий момент, равный M(z) = -P ω;
ω - величина отклонения от прямолинейной формы стойки;
Решая это дифференциальное уравнение

А и В постоянные интегрирования, определяются по граничным условиям.
Произведя определенные действия и подстановки получим конечное выражение для критической силы Р

Наименьшее значение критической силы будет при n = 1 (целое число) и

Уравнение упругой линии стойки будет иметь вид:

где: z - текущая ордината, при максимальном значении z=l;
Допустимое выражение для критической силы называется формулой Л.Эйлера. Видно, что величина критической силы зависит от жесткости стойки EJ min прямо пропорционально и от длины стойки l - обратно пропорционально.
Как было сказано, устойчивость упругой стойки зависит от способа ее закрепления.
Рекомендуемая величина запаса прочности для стальных стоек ровна
n y =1,5÷3,0; для деревянных n y =2,5÷3,5 ; для чугунных n y =4,5÷5,5
Для учета способа закрепления концов стойки вводиться коэффициент концов приведенной гибкости стойки.


где: μ - коэффициент приведенной длины (Таблица) ;
i min - наименьший радиус инерции поперечного сечения стойки (таблица);
ι - длина стойки;
Вводиться коэффициент критической нагрузки:

, (таблица);
Таким образом, при расчете поперечного сечения стойки необходимо учитывать коэффициенты μ и ϑ величина которых зависит от способа закрепления концов стойки и приведена в таблицах справочника по сопромату (Г.С. Писаренко и С.П.Фесик)
Приведем пример расчета критической силы для стержня сплошного сечения прямоугольной формы - 6×1 см., длина стержня ι = 2м. Закрепления концов по схеме III.
Расчет:
По таблице находим коэффициент ϑ=9,97, μ = 1. Момент инерции сечения будет:

а критическое напряжение будет:

Очевидно, что критическая сила Р кр =247 кгс вызовет в стержне напряжение всего 41кгс/см 2 , что значительно меньше предела проточности (1600кгс/см 2), однако эта сила вызовет искривление стержня, а значит потерю устойчивости.
Рассмотрим другой пример расчета деревянной стойки круглого сечения защемленной в нижнем конце и шарнирно закрепленной на верхнем (С.П. Фесик) . Длина стойки 4м, сила сжатия N=6тс. Допускаемое напряжение [σ]=100кгс/см 2 . Принимаем коэффициент понижения допускаемого напряжения на сжатие φ=0.5. Вычисляем площадь сечения стойки:


Определяем диаметр стойки:

Момент инерции сечения

Вычисляем гибкость стойки:
где: μ=0.7, исходя из способа защемления концов стойки;
Определяем напряжение в стойке:

Очевидно, что напряжение в стойке составляет 100кгс/см 2 и оно ровно допустимому напряжению [σ]=100кгс/см 2
Рассмотрим третий пример расчета стальной стойки из двутаврового профиля, длиной 1.5м, сила сжатия 50тс, допускаемое напряжение [σ]=1600кгс/см 2 . Нижний конец стойки защемлен, а верхний свободный (I способ).
Для подбора сечения используем формулу и задаемся коэффициентом ϕ=0.5, тогда:

Подбираем из сортамента двутавр №36 и его данные: F=61.9см 2 , i min =2.89см.
Определяем гибкость стойки:

где: μ из таблицы, ровное 2, учитывая способ защемления стойки;
Расчетное напряжение в стойке будет:

5кгс,что примерно ровно допустимому напряжению, и на 0.97% больше, что допустимо в инженерных расчетах.
Поперечное сечение стержней работающих на сжатие будет рациональным при наибольшем радиусе инерции. При расчете удельного радиуса инерции
наиболее оптимальным является трубчатые сечения, тонкостенные; для которых величина ξ=1÷2.25, а для сплошных или прокатных профилей ξ=0.204÷0.5

Выводы
При расчете на прочность и устойчивость стоек, колон необходимо учитывать способ закрепления концов стоек, применять рекомендуемый запас прочности.
Значение критической силы получено из дифференциального уравнения изогнутой осевой линии стойки (Л.Эйлера).
Для учета всех факторов, характеризующих нагруженную стойку введено понятие гибкости стойки - λ, коэффициент провиденной длины - μ, коэффициент понижения напряжения - ϕ, коэффициент критической нагрузки - ϑ. Их значения берут из таблиц справочников (Г.С.Писарентко и С.П.Фесик).
Приведены примерные расчеты стоек, на определение критической силы - Ркр, критического напряжения - σкр, диаметра стоек - d, гибкости стоек - λ и другие характеристики.
Оптимальным сечением для стоек и колон является трубчатые тонкостенные профиля с одинаковыми главными моментами инерции.

Используемая литература:
Г.С Писаренко «Справочник по сопротивлению материалов».
С.П.Фесик «Справочник по сопротивлению материалов».
В.И. Анурьев «Справочник конструктора-машиностроителя».
СНиП II-6-74 «Нагрузки и воздействия, нормы проектирования».

1. Сбор нагрузок

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние). Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности. В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль. Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м. означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм. Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.



В продолжение темы:
Балкон и лоджия

С древних времен наши предки пытались угадать в сновидениях перст судьбы и придавали снам колоссальное значение, наделяя каждый увиденный предмет или событие символичным...

Новые статьи
/
Популярные